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Research on Deterministic Methods of Seismic Source Identification

Report No. 1 - Summary

In order to interpret seismic event discrimination in terms of the
physical properties of the source and to be able to establish new discrimin-
ation techniques we have generalized seismic source models based on relaxation
source theory to include the effects of non-homogeneous initial prestress.

In particular we have considered the effects of strongly concentrated prestress
in the vicinity of the shatter zone produced by an explosion.

The important result from the work so far completed are: (1) the spectra
of P and S waves radiated due to stress relaxation effects can be strongly
peaked, with the nature of the peaking being azimuthally dependent in general
and quite strongly dependent on the size and location of the initial stress
concentration; (2) the corners or peak frequencies of the P and S wave
radiation are different from one another (S lower) and are both shifted to
higher frequencies when the stress concentration is close to the shatter zomne.
In addition, the corner or peak frequency value is related to the size of the
stress concentration rather than to the size of the shatter zone; (3) the
pattern of first motions from the tectonic release, when the prestress is
inhomogeneous, is not pure quadrupole with higher order multiples also involved.
The ordinary quadrupolar pattern predicted from a homogeneous prestress can
be strongly distorted when the prestress is concentrated and can be highly
non-quadrupole in form.

Considering both the explosion generated direct compressional wave
field and the field-produced by such tectonic effects together, the consequences
for discrimination and explosion yield determination are:

(1) Short period perturbations in the wave train can be expected to be
very complex due to dependence on stress concentration effects. However,
the perturbations should be small to moderate for the first cycle of

the P wave motion, while being significantly larger for the later part

of the P wave train. Body wave magnitude measured from the first P

wave cycle should, therefore, be minimally perturbed by stress relaxation
effects.

(2) Long period surface wave radiation can be strongly perturbed by
tectonic release effects within the whole measureable low frequency

band (i.e.g, from approximately 5 sec to 60 sec in period). The perturba-
tions in the observed Rayleigh wave forms can be such as to add to,

or subtract from, the explosive generated Rayleigh wave depending on the
orientation and magnitude of the prestress in the vicinity of the explosion.
The magnitude of this effect can be very (unacceptably) large. In those
cases where Love waves are significant, so that tectonic release is
involved, then yield estimation using M_ can only be made after correction
of the Rayleigh wave measurement using Ehe observed Love wave to deduce
the size and configuration of the tectonic source.

Predictions of the radiated seismic wave field from both explosion and
earthquake models in the regional and teleseismic distance ranges, for
layered, anelastic earth models, have been used to predict entire synthetic
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asymptotic and locked mode approximation methods are being used. Examples of

synthetics and comparisons to observations in the regional distance range

suggest that most of the seismogram can be understood using current source

and medium models. Some specific applications of this capability have been

directed toward providing an understanding of the large amplitude Pg signals

in the regional distance range, and for studies of regional anleastic char-

acteristics of the earth. The results of these two applications have been

to show that: Pg is comprised of a large number of high modes, which can also

: g be viewed as a large number of multiple reflections from the 'granitic- J
k basaltic" layer interface in the middle crust; and that the anelastic dissipation :

function, or Q, is frequency dependent with the anelastic Q increasing with :

increasing frequency, and that the low velocity zone absorption is srongly

variable regionally (and also within particular regions) with the 1ow velocity

zone Q dominating the adsorption along teleseismic paths.

t - seismograms for purposes of comparisons with observations. Both full wave

s a
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I. Introduction

The objectivesof the research being conducted are to: (1) Develop
methods of seismogram synthesis using mode superposition and related
methods, (2) Finalize the theory for source inversion by modal
decomposition, (3) Determine the anelastic characteristics of the medium
using known source characteristics, (4) Interpret seismic event
discrimination in terms of the physical properties of the source,

(5) Establish seismic event discrimination methods from formal inversion
techniques, and (6) Establish regional discrimination techniques based
upon physical properties of the source. 1

In this report we describe research results relating to seismogram

synthesis (item (1) above) and the interpretation of seismic event
discrimination in terms of the physical propertigs of the source

(item (4) above).‘

II. Seismic Source Modeling

In order to interpret seismic event discrimination in terms of the
physical properties of the source and to be able to establish new
discrimination techniques we have generalized seismic source models
based on relaxation source theory to include the effects of non-homngeneous
initial prestress (Stevens, 1980). 1In particular, we have considered
the effects of strongly concentrated prestress in the vicinity of the
shatter zone produced by an explosion. This work shows in detail how

the effects of tectonic release can perturb the normal seismic radiation

from an explosion. The results of this work are included in the Appendix A.




The important results from the work so far completed are (1) The

spectra of P and S waves radiated due to stress relaxation effects can
be strongly peaked, with the nature of the peaking being azimuthally
dependent in general and quite strongly dependent on the size and location
of the initial stress concentration, (2) The corners or peak frequencies
of the P and S wave radiation are different from one another (S lower)
and are both shifted to higher frequencies when the stress concentration
is close to the shatter zone. In addition, the corner or peak frequency
value is related to the size of the stress concentration rather than to
the size of the shatter zone, (3) the pattern of first motions from the
tectonic release, when the prestress is inhomogeneous, is not pure
quadrupole,with higher order multipoles also involved. The ordinary
quadrupolar pattern predicted from a homogeneous prestress can be strongly
distorted when tﬁe prestress is concentrated and can be highly non-
quadrupole in form.

When the prestress has an average (homogeneous) component value (near
100 bars or so) and a nonhomogeneous component corresponding to local
stress concentrations in the vicinity of explosion produced shatter zone
(with stress levels near several hundred bars) then, for this "expected
prestress environment", one can predict the following consequences for
discrimination and explosive yield estimation:

1. Short period perturbations in the wave train can be expected

to be very complex due to dependence on stress concentration effects.

Howe&er, the perturbations should be small to moderate for the

first cycle of the P wave motion, while being significantly larger

e i e s av s gy




for the later part of the P wave train. Bod; wave magnitude
measured from the first P wave cycle should, therefore, be
minimally perturbed by stress relaxation effects. Further,
corrections to the first cycle of the P wave for tectonic affects

could conceivably be made for purposes of yield estimationm.

2. Long period surface wave radiation is strongly perturbed by
tectonic release effects within the whole measureable low frequency
band (i.e., from approximately 5 sec. to 60 sec. in period). The
perturbations in the observed Rayleigh wave forms can be such as

to add to, or subtract from, the explosive generated Rayleigh

wave depending on the orientation and magnitude of the prestress

in the vicinity of the explosion. The magnitude of this effect

can be very <(unacceptably) large. In those cases where Love

waves are significant, so that tectonic release is imnvolved, then
yield estimation using Ms can only be made after correction of the
Rayleigh wave measurement using the observed Love wave to deduce
the size and configuration of the tectonic source. Such a
correction would be much more reliable, when spherical shatter zone
induced tectonic release is involved, than it would be if actual

earthquake triggering is involved.

ITI. Wave Propagation Theory: Synthetic Seismograms

In the course of our development of methods of synthesizing seismo-
grams in the regional and teleseismic distance ranges we have considered

two theoretical approaches; in particular mode superposition using a

"locked mode" approximation method (Harvey, 1980) and the full wave
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asymptotic method (e.g. Cormier, 1980). Results from the full wave
theory are descrlibed in this report. Tie Appendix B provides a detailed
discussion.
The importance of the full wave theory is that it is applicable
at all distance ranges, incorporates sphericity, can be applied to media
models with velocity gradients, is a frequency domain theory and as
one consequence can incorporate frequency dependent anelastic absorption
and scattering, and finally, it is accurate and quite fast computationally.
In our work so far, the theory has been fully developed and coded
for the near and regional distance ranges from a seismic source. It
is now possible to compute complete seismograms produced by rather complex
source models in complex earth models. Programs for this purpose have
been used to predict the radiation from explosion and earthquake models
in the near and teleseismic distance ranges. Examples of these
computations in the near regional distance range are shown in the
Appendix B, along with the full theoretical development of the method.
One application of this capability has been to study the anelastic
properties of the upper mantle with attention to frequency dependence
of the absorption (Lundquist, 1980). 1In the work to continue we will
use this theoretical modeling capability to further study anelasticity,
but also to study both earthquakes and explosions in both the regional

and teleseismic distance ranges to infer source properties and to define

discrimination methods.
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Seismic Radiation from the Sudden Creation of a SphLerical Czvity in an

Arbitrarily Prestressed Elastic Medium

Summary. We solve the general problem of seiszic radizcion froz the
sudden creation of a spharical cavity in an arbitrarily prestressed
elastic medium. This problem has direct applicatica to tectonic release

due to the creation . of a shatter zone by large uncerground explosionms.

In addition, however, the problem has essential feztures in common with
3 i the more general earthquake source. Specifically, it caa provide an
understanding of how an inhomogeneous prestress can aifect radiated
seismic energy from a tectonic source. The prcblem is solved through
the use of a Green's tensor integral equation in which z11 quantities
are expressed in terms of vector spherical harronics. Wwe ottain an
exact solution and an approximate solution to this problem. The
approximate solution may be useful for the study of other fezilure

geometries. The results agree with previous solutions Zor tiae czse of

i pure shear. The case of localized inhomogeneous prastress is examined

;. in detail. The primary result of the inhomogeneous prestress is the

§ addition of considerable energy at frequencies above the ustal ccrner
frequency. This causes an increase in the corner frequency, a change in
the slope of the spectrum near the corner frequency and ir some case

a strong, low frequency, far field spectral pezk. ?Peaked spactra

always exist, however, near the usual quadrupole noiZes. Turther, the

angular distribution of radiation in general will not be purs quzdrupole
in nature. As an example of a strongly inhomogeneous prestress case,

stress concentrations near the source due to a poin:t dislocation and a

point center of compression are considered. Tre reiizted wevelorms




and spectra then vary greatly with angle) with the spectra peaked
strongly at all azimuths in some cases. For these cases the angular
distribution of first motions is still relatively simple, but can be
deceptive if used to determine a focal mechanism. 3ecause of the
canonical relation of this problem to the more general earthquake
failure problem, it is to be expected that similar stress concentra-

tion effects will occur for earthquakes. Thus, similar changes in corner
frequency due to stress concentration effects could lead to errors in
earthquake source dimension estimates and the related existence of

spectral peaks could lead to errors in seismic moxment measurements.

N




l. Introduction

An earthquake can be considered to result from :z2 creation of an
external boundary in & prestressed elastic mediuz=. 3izmilarly, at least
some of the anomalous radiation from an explosior cez e considered
to result from the creation of a shatter zone in = p-estressed medium.
Here we consider the problem of the sudden creztion :f a stress free
surface in an arbitrarily prestressed medium since t>is problem con-
tains many of the essential characteristics of th= ezrthquake and explosion
induced tectonic release problems. In particular it skows clearly

and sinmply what effects inhomogeneous prestress w21l hzve on the
e .

e

observed radiation field We will show tha£;problem 12y be treated as
an initial value problem or, equivalently, as a stress pulse problem.

We solve this problem exactly for the case 0Z a spherical cavity
using vector spherical harmonics in the elastic Gree:z's tensor integral
equation in the frequency domain. The result :Is a rzlatively simple
solution for the radiation field involving nothinz mcre than the inverse
of a number of two by two matrices and an inverse Fowzier transform.

The solution is valid for any arbitrary homogeneous cr inhomogeneous
prestress and is valid in the near field or far fislé. Previous solutions
to spherical source problems have all been obtained I:r uniform stress
fields. Hirasawa and Sato (1963) found an exact soluzion for the sudden
creation of a spherical cavity in a pure shear strass f£ield. Randall
(1964a) used a spherical inclusion in which the c=<terizl iInside suddenly

underwent a phase change to become the same as the exzernzl material to

model deep earthquakes. He applied this to a uriform compressive

(1964b) and a uniform shear (1966) prestress. Archanmtzzu (1968) used
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a growing, propagating, transparent spherical cavity iz 2 uniform shear
field as a model for earthquakes. Minster(1973) reficed this model.
Burridge and Alterman (1972) found an exact solutior fcr a unifornmly

growing spherical cavity in a pure shear field. Zurcicge (1975) used

this solution as a test for Archambeau's (1968, 1572, cranspareat source
approximation. Koyama et al. (1973) found an exact solution for the sudden
creation of a fluid filled cavity in a pure shear field. Minster and
Suteau (1977) examined the relationship between a grewing spherical
source and a growing circular dislocation with the szme growth history.

The case of inhomogeneous prestress is particuléily interesting
since almost all previous source models have used the bouadary condition

of homogeneous shear or its equivalent. Actual stress fields in the

earth are likely to be highly inhomogeneous. Archamt=zu (1968, 1972)
attempted to allow for a localized prestress by solving the static
initial value problem for a homogeneous shear field, u: then limiting
the effective source region to be within a radius Rs Zor his dynamic
calculations. Snoke (1976) showed that there were pr:oblexzs with this
approximation. Bache and Barker (1978) attempted o Zecermine stress
variations in the earth during the 1971 San Fernando zzrthquake by
using a2 solution for a transparent growing sphere in a-;;;;;-shear
field, but allowing the magnitude of the stress fi2lé to vary during
growth. We find, in an exact calculation, that the m=ia effect of the
inhomogeneous prestress is appearance of considerzble s=ismic energy at
frequencies greater than the usual quadrupole corner Zrsgquency. 4

slightly inhomogeneous prestress results in a nearly zu=zdrupole dis-

tribution of radiation, but with anomalous radiation iz and near the nodes.

L e s A
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A stress concentration close to the source results in a drazatic increase
in corner frequency and the appearance of pronounced spectral peaks at
all points of observa:ions. The waveforms produced by a concentrated
prestress are substantially different from those produced by a uniform
prestress. -The angular distribution of first motioas, however, may or
may not appear to have a quadrupole distribution.

This paper is the first attempt to explicitly calculate the effect
of an inhomogeneous prestress on the spectra and waveforms of a dynamic
seismic source. The spherical cavity problem can be solved exactly and
is the canonical problem which can be used to determine some of the
features of failure in other geometries. The results should be important

to observational seismologists since the corner frequency is often used

‘to estimate the size of a seismic source and the results of this study

indicate large variations in the corner frequency as a function of local
prestress inhomogeneity, location, and magnitude. In some cases, for
example, increase in the apparent corner frequency occurs and this can
cause a gross underestimation of source dimensions. Further, the
complexity of the spectrum that can be produced can make the corner
difficult to define observationally and peaking of the spectrum can
lead to uncertain or erroneous measurements of moment. On the other
hand, the theory given here should prove useful for the study of spatial
variations of stress in the earth.

We are simplifying the seismic source problem in this paper
through the use of instantaneous creation of the failure surface and

through the neglect of any consideration of the material inside the

cavity. In this way we can examine the effect of an inhomogeneous
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stress field on seismic radiation independently of the complexities

3 of finite rupture velocity and certain boundary effects. The formidable

Al general problem of failure in a prestressed medium in which the growth
rate is determined by the prestress and the problem.is coupled at i
the boundary to the material inside the cavity has been discussed in

E detail by Archambeau and Minster (1978). 1
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2. Basic Relations

The problem of the radiation released when a cayity forms in a prestressed
medium is conveniently expressed in terms of a Green's tensor integral
equation. Consider first the cavity of arbitrary shape shown in figure 1,

We assume that the medium is prestressed and that the cavity forms at time
t = 0. The medium is then displaced from equilibrium initially and relaxes

to a new equilibrium state. The displacement field satisfies the elastic

equations:
32
Loulx,t) -p=— ulx,t) =0 2.1)
ot
3 3
where ’L-g(_.,t) = — C = u (2.2)
= 3xj 1jk® axk L

is the elastic operator. C 19k is the constitutive tensor for the medium
external to the cavity, i

The Green's tensor satisfies the equation:

2

)
ot,t ) -p —
o t2

C(x, x
9

LS x5y otat) = = 1 8(x-x.) 8(t-t ) (2.3)

S

o)

We will solve this problem in the frequency domain with the aid of

vector harmonics. We define the Fourier transform and its inverse:

g(w) = /E(t) o1t dt t~1(t) = ;—,"/\:(w) eiwt dw (2.4)

-
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The transformed displacement field satisfies
Lou(x,0) + pw? u(x,w) = 0 ' (2.5)
5 X pw  u(x,w .
E The transformed Green's tensor satisfies:
3
2
LeGx,x ,0) + pw G(xs %) = - 1 6 (x-x%) (2.6)
3
3
It will prove simpler to use vector notation rather than indicial
4 notation throughout this paper, and we define the stress operators:
T(u) €, , 2—u, =1 @2.7)
=~ 1jke axk L ij
o
T(G) = ¢C 2_¢ (2.8)
T2 1jk® 3% fm

The Green's tensor integral equation for the general case of growing
phase boundaries has been derived by Archambeau and Minster (1978), For

the case of the instantaneous creation of a boundary it reduces to:

(2.9)

T e e - .
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The last term contains the effect of the initial conditions. The surface

integral contains the response of the surface, The first term in this integral
will vanish for a stress free surface.

The frequency domain Integral equation 1is:

(2.10)

where u* = u(t=0), the initial displacement from equilibrium. Again the term
containing g(g) vanishes for a stress free surface.

The initial value term in equations (2.9) and (2.10) can be quite difficult
to evaluate. The problem can be made much simpler by defining the "stress
pulse equivalent" to the initial value problem. We use the fact that since
2'* is the difference between two static equilibrium fields (the prestressed
state without the cavity and the final equilibrium state)

A‘;'B* =0 (2.11)

~

Multiplying this equation by’g and multiplying equation (2.6) by ux,
subtracting and integrating overall space external to the cavity and
substituting in equation (2.10) we find that for a stress free cavity of

arbitrary shape:

(2.12)

where :x" ig the relative displacement field
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u' (x.w) = u(x,w) - u*(x)/iw

g(g*) . i is the traction drop on the cavity surface between
the initial and final state. Since the final tractions are zero for
the stress free cavity, I(E*) . i is just the initial tractions on
the surface due to the existing prestress. Comparing equation(2.12)
with equation (2.10), we see that the initial value problem is equivalent
to a stress pulse equal in magnitude to minus the initial tractions
applied to the cavity surface at time t = 0 . While the relaxation

problem is perhaps more naturally expressed as an initial value problem,

the solution is much easier when expressed as a stress pulse equivalent.
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The infinite space Green's tensor in the freguezcr  comain is given

by Ben-Menahem & Singh (1968) in terms of vector sp=ericzl armonies:

ik had L
8 20+1 (-r)! | 7= -¢
c T pp—_ E == o=l |y
;_\_4(—3-".3{0) 4ryu 2=1,1,0 L (L+1) E_z (2+)! [~L::(ro) ogim(r)

(2.13)

-

3

ke ) e 8V £ oy 1men |
+ N (2 ) Np (1) + 2(2+1) (u ) Lon(t,) '}"'KJ(-)J
where = sgn (r-r ) and r =|x| .

- ~ i‘. t__l_ “y',i-:sl_i:
Zx(erws),}i-k (VxSxer,B),L T Y2

=,

e ]

8 -
kK =2 . =Y
a ? kB B
Here @,B8 are the P, S velocities of the medium

+ jl(k‘ar)
v - Yzm(e,w{ ' }
hn (k)

+
While Ib'é is similarly expressed using kS .

The operation * refers to complex conjugatiorn of t=e zngular part

of the function, while the Hankel function remains u:clza:geé. Explicit

forms for M, N and L are given later (see equazicz 73.3) - (3.13)).

i
i
I
1
1
!
i
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3. Solution for Arbitrary Prestress

By expanding all relevant quantities in terms of vector spherical
harmonics and using the convenient orthogonality properties of these
functions, we can find an exact solution for the radiation field for the
sudden creation of a spherical cavity in an arbitrarily prestressed medium.
We need to solve the equation:

=f wIE) R A+ o -1
Z &

Here fi is the outward normal er at the spherical surface .

Ef may be either the initial value term:
I . *
u. =+ iwp w *G dv (3.2)
where V is the volume external to the sphere, or the stress pulse term:

uI =1_ G-
~ inJ &

z

*)+8 dA (3.3)

~

a3

The stress pulse term is easier to evaluate. We will now solve equations

(3.1) and (3.3) for a general stress field.

Any vector function can be expanded in the following way:

° g
Y0 = 3 5 aDp, 6,0+ P g
= F-—

(<,%) (3.4)

~LE

SEORANC ,c>f
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P, ,B , C _ are vectors defined by (see Morse and Feshbach (1953) or
~m® ~im® ~im

Ben-Menahem and Singh (19¢8)):

A
n?lm = er Ylm(s’¢)

(3.5)

A 0 A ) -
A4 B, = [ee 36t & Sine a¢]Yzm(°’4’)

!
14

A 1 3 A 9
va(e+l) G o =["'e.sm 5 3¢ ~ ¢ 36 ]Yzm(e’¢)

Yim(e’w = Pgm(cos 6) e

where sz(x) is the associated Legendre function. These vectors have the

following orthogonality relations:

f'?f.m"gl’m' a =_/-'~139.m'91'm'dQ =./52m Lyrprd® =0
(3.6)

and
f,?zm'—sz'm"m =',/"‘l?lm’rgﬂ.'m'dﬂ s_/.'glm Sornt9® = O vy

Q = .{f—r_ .(2'_+mz.!—
tm 28+1 (2-m)!

Either by inspection or by using the orthogonality relations we can

expand }_1_1 in the form:
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@ 2
80,00 = 5 S Ly 0 By 6,4)
£=0 m=-2

(3.7)

4 (Ea) B, (8,6) + & (r,0) €. ol
We can also expand the unknown displacement field Y in the form

-3 J'A '
u(w,r,0,0) =3 L (r,w) 2 (e,¢)
~ 2=0 n;g{ fm

(3.8)

bfm(r,w) B n(8:0) + b o(6e) & (e,¢)}

The Green's tensor for this problem is given by equation(2.13). In

terms of the vectors P, B, C we can write (Ben~-Menaher and Singh (1968))

o
3
|

= gl(y) Son

* *
= 8(5) Py + 83(9) B, (3.9)

=
w4+
B

+ +
Lom = gZ(") —gﬂ.m + gs(x) vglm

where y = ker, x = kur. The vector M represents toroidal waves. The
vectors L and ’_Ii represent P and S spheroidal waves respectively.
~S

We also need the associated tractions

+ A +
A8 = W ) g,

QA

+ + +
N = “(hz(y) Som * 0500 »%m) (3.10)

L2

\3
z@ﬂ%%)g@gﬁ=%ﬁmgi+hmgn)
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where
gii(y.) = /A (e+D) fi(y)
e
s
g'f(y) = 2(241) ——(J;L)
3+ + 1 f:(}’)
8, (y) = /2 (2+1) £, ) + 5

g (0 = £ (0

+
£, (x)

+ )
gf'(x) = y.i{L+])

1%
By ) =k 2GHD y Ffl(y)

2+ +
hy (y) = ZkB 2 (2+1) F“(y)

3% +

hy () = ky V2 (1+1) F () , (3.11)
b0 = 2k F () 2(2+1)(§- )3

3 a L4 o

5+ T | g \3

h2 (x) = Zka 2 (2+1) F&l(x) 2 (2+1) 5

: + _ 1
s 18 = GreD @D @)

[(2-1)(29&3)5:_2(7.) - @e+1) £, (2) - (442) (22-1) fz_,_z(z)]

=, 1 2 + +

+
+ 22 (2+2) (2¢-1) f“_z(z) }
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s | 1
Fp 4 (2) = G D TS [z(z-1)(21+3) £;_,(2) + (141) (342) (20-1) £

z+2(z)

. _ I
S -

2 ,.2 +
- (22+1){ 222 + 22- 1 + g_:%ﬁ_ (22-1)(22+3)} f;(z)]
28

where f: are spherical Bessel (+) and outgoing Hankel (-) functioms.
(There is a misprint in Ben-Menahem and Singh's definition of F23 which

is corrected here.)
The surface integral in equation (3.1) can now be evaluated. Because

of the orthogonality relations (3.6) the surface integrals give either

Rznlm or zero. The integral equation has now been reduced to a set of

algebraic equations. In fact, the individual terms in the eigenfunction

expansion are almost completely uncoupled. The remaining equations for each

value of £ are:

2
-ikBR

1 — B 1 b R h *(R)
bzm(r) = T+D gz “(x) by (R) h t@®) + gl " (x) ( )

| + 82 (1) b (R) hy (R) + 82 “(r) b (R) h (R) + dim(r)

(3.12)
-ik R
2 — B ¥ + b R h *(R)
bzm(r) = Ta+D | & (r) b (R) h (R) gl (1) ( )

""82 (r)b (R)h (R)+gz (r)b (R)h *(R)

2
+d2m(r)

-ik R2

3 (r) = B 3
b = TaED gl (1) b LR h T®) )+ d, (1)

- A b Atve e e
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(The arguments of the g and h functions are understood to be
multiplied by ku or kB as defined in equation (3.11)).
We can now evaluate these equations at r = R (the cavity radius)

and have the solution to the problem.

The coefficients of C are uncoupled from the others, so we have

-1k _R2 %
immediately letting L (2+1) = Qg
3
bfm(R) - dzmif) = (3.13)
1-Qq g (R) h ' (R)
and at any point r
1+ 3
3 S 1- thal (R) dlm(R)
bon(t) = d (1) + g (r) (3.14)

1-0q, 8 ® bF®

didureatibie un o N O s Liocndhaiait kil




The coefficients bﬂ:.tm and bzm are coupled for £ % 0. The solution for these is

1 1 1

bzm(R) All AlZ bzmm d?.:(R)

, = Qg + o
2 2 (3.15)

blm(R) A?.1 A22 b!.m(R) di,m(R)

2- 2+ 4 4+
where A =8 (R) h, (R) + g, (R) hy (R)

2- 3+ 4~ 5+
A, =g, (R h (R) +g, (R) hy (R)
12 2 2 2 £ (3.16)
Ay = & B 2T + 827 iR
By, =85 (B BT(R) + g2 (R) hT(R)
and
1 -1
by(®) 43R |
= (L' Qz% ' (3.17)
2
b(R) d, :faR)

This requires the inversion of only a 2 x 2 mztrix. Substitution into

equation (3.12) gives the exact solution to this protlea.

The case 2=0 must be treated separately since 200 = C

0. Setting
~00

b2 = 0 we can immediately solve for bcj;o'

oc

© e e e b M s -
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1 ® doo(R)
b R) =
oo 4= 4 (3.18)

1-q, g, (R) b _(R)

b 4+ 1
Qg (r) h_ (R) 4_ (R)

1 1
boo(r) = doo(r) + 22 2 o0 (3.19)

4 4+
1-Q g (R) b (R)

The factors of 2(g+1) in Qo and hz cancel.
Inspection of the solution (equation 3.12) shcws that the displacement
field consists only of outgoing spherical waves. IZ desired, the solution

can be written:

® £
2(::,(0) = Z Z alm(w) fy;m + Blm(w) N;m + Yi‘.m(z) fIJ’m
£=0 we-2 ~ ;

1 { A
where the coefficients L Szm, Yem 3T€ determined by comparison with
equation (3.12). The first term is a toroidal wave, the second a spheroidal

shear wave and the third a spheroidal compressionzl wave.
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4. Pure Shear

The case of the creation of a spherical fazilvre s:wZace in a pure
shear field has been used 2s an element in a model Zcz éar:hquakes by
Archambeau (1968) and Randzll (1966). Archazbeau (1572 used this as a model
to predict anomalous stress wave radiation fror explesices. Randall's solution
is equivalent to the stress pulse solution which is usec here as the initial
value term. This problem was solved exactly by Hirasswz and Sato (1963).
Their results are reproduced in Koyama et al. (1973). K-yzma et al. solved
the problem of the creation of a fluid filled cavity Zn z pure shear field.

They report little difference in the waveforms for thz tvo cases.

It is possible to do this problem in two ways. An expression for u* is
given by Landau and Lifschitz (1970, p. 24). After scme 2ffort it can be shown
that this can be written in terms of vector sphericzl ha-mcaics with only the
coefficients of B and P, non-zero. The initial vaiue Integral (equation

~2m ~2m
3.2) can then be performed. This leads to a very messy expression. It is much
easier to use the stress pulse solution and evaluzte egjuszziosn (3,3).
Z(g*)-ﬁ is easily found. The initial normal tracticas arz sicply those of a
pure shear stress field resolved onto a spherical svrface. The final normal

%) oD = - =

tractions are zero. So g(g’)‘s cijnj with 11 + Casn + a3 0 for the most
general pure shear field. We need to write these ir tarm= of vector spherical
harmonics. After some algebra it can be showa that th2 m:s< general pure

shezr field can be written:




where A, are coefficiencs determined by the choice of cartesian stress tensor.

2m

In terms of the cartesian componé.nts of the shear stress:

A

1 1
22 = 13 ©31 " 922) * 51 %12

-1
3

1
+ 37 %23

2
A2—1 = - 2013 +-i- c

4
Ayg = 2004y = 05) =79y

Now we can evaluate equation (3. 3)

1_1 *n
= 1wf§'§(5)'ndA
z

The non-vanishing part of G is

Sx,x ) =

~a’~0 4y ~2m paty) 2m =~

2 3
%,FZ (2-m)' <*+(x)N'(x)+6<—§) Mooy
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(4.1)

(4.2)
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Evaluating the surface integral we find
I 211 2 :
uo= zﬁ[d2m22m+d2m EZm] (4.4)
F-
H where, using the notation of equation (3.11)
&L E, 23+ Z gty )
2m - T 6uB “om | (B2 YT 28 U ) 8 W
co(E) [P + B Sty ) 8
a g %, 2 & %, gy x
(4.5)
3 2 - B, 200y 2 8 e 3 ) B
2m” T 6B “am | \B2 Yo' T2 B2 Yol ) B2 Y

X, = kaR x = kar Y, < kBR y = ksr

These coefficients can be substituted into eguatican (3.17) to obtain the

exact solution to this problem. In the far -fieild approxizztion g; and g;

vanish. The solution then corresponds to a radisl P wave and a transverse
S wave as it should. The far field P and S spectrz for tte initial value/

stress pulse (eq. 4.4) solution and the exact solution zre shown in

figure 2. The initial value spectrum contains a large zu=ber of dips not
present in the exact solution. Burridge (1975) pointed cut that these dips

result from the stress discontinuity at the endé cof the rulse. This is a

e e

Ly
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consequance of the fact that without the inclusion of the surface term

(eq. 3.1) there are in effect no boundaries in the medium. All disturbances
are then propagated at the corresponding velocity of the medium. The resulting
fulses will have a duration equal to the travel time across the cavity. The
farfield P and S waveforms are shown in figure 3 for both the initial value
and exact solutions. The solution agrees exactly with the solution of

Hirasawa and Sato (1963). Their spectra and waveforms are reproduced in

Koyama et al. (1973) and match figures 2 and 3.

e
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5. Radiation from Non-Uniform Stress Fields

We want to consider the radiation from a stress free sphere

spontaneously created in an arbitrarily prestressz=d elastic medium.

This should be a good model for predicting the tecztcaic release from
explosions. It should also be a good model for the study of spontaneous
failure in an inhomogeneous stress field. Minster zad Suteau (1977)
have examined the question of failure geometry in scae detail. The
main differences between.the planar source and the spherical source is
that for the planar source the amplitude is reduced b5y a factor of 3
and the waveform is smeared out over a longer perZod of time due to
interference of spherical waves leaving differeat parts of the surface
at different times. This smearing effect can also be seen in the numerical
results of Madariaga (1976). While we do not expect exact agreement
between the radiation produced by an earthquake and radiation produced
by a spherical cavity, the cavity can provide iaformation on general
features such as the angular distribution and approximate waveforms.
Since the spherical cavity problem is exactly solvable, it provides a
useful tool for the investigation of the general prodlem of failure

in an inhomogeneous stress field.

The first question to be answered is the nzture of different kinds
of prestress which are physically acceptable. Anyr rzgioan of the earth,
especially seismically active regions will contzic mzny dislocations.
These dislocations will act like some complicated distribution of i
(equivalent) static.body forces in the medium. Tke initial field

f

satisfies [ . E} = f and the final field satisfies .u =f , so
[g ™ ~ .

7
at
A L

. u* = 0 , the static elastic equation

r
!
) -
L

the difference field satisfies

- e e et e s b -y
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vith no body forces acting. This difference field m:st be finite at
infinity. Sitne we are interested in the region outside r = R, the
solution representation need not be finite at r = 0 . The cost general
static displacement field satisfying these conditions can be expressed

in terms of the following eigenvectors (Ben-Menzhexz zad Singh, 1968):
-2-2

N = 4 -
T [V2 (8+1) B,Lm (2+1) le]

-2 1 '
F _=r 7 [(y=2) Y2 (2+1) Bogt (v +2- 1)23“]

(5.1)
- -] ———
Hm=T LED Som
where
2
Y = 4(1-0) = —22
2 2
a” ~ B
The displacement field is then
* = ~ "~ ~
s (r) % alm Hﬂ.m + ~cl?.m Elm + flm Elm (5.2)

We are now in a position to compute the radiation field. The easiest

way to do this is, again, to use the stress pulse solution

g=fg,-_1(§) © AdA + ul
A (5.3)

4
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_1 * I
U —E_/z-%'é(y")'ndi‘ (5.4)

* A : : - -
We need to compute T(u ) * e  for v gzivez in zguetion 3.Z. The
~~ r ~

stress field is given in spherical coordinates by:

. gu
T .= Ae_+ 2u 3
du ou
- € L 1. _* _
Tor = Mgz * TG — ug)!
8u¢ 1 du
= —— __r__ S 4. -
T¢r u[Br rsind (3¢ s=n* L$)' (5.5)
where
Jdu 4 ou Jdu
_ .1 8 1 $ , cott
£~ or + r 655_ + 2 ur)+rsin8 L) r 3

We consider any function of the form:

u(r,6,0) = Z[fumm B (518) + £0,(0) 25,0 + 55,00 G G0] G.6)
£,m

Using the expressions for P, B and C (equatiozs 3.32) and the ecuation

—t

for ng(e,¢)

(1}
o

5.7

+ 2(2+1)} vo_(5,3)




we have after some algebra:

2f of
% 06 “un  Mute gyl g, Tl o

-3
—~
(=3
~—r
>
1

of f
) 2%m llm _ “2%m
+ u( o + YL(2+1) e )Elm(e,@

e f3tm
+ u( or - r

) £,,(6:9) (5.8)

comparing with expression (5.2) we find

T e = Z~zm(e’¢) {azm £ 473 u) (042
[
-+ —%’3 e pyee-1) (-202 Qo)) + Al(Hl)(Zl—l)]}
\
+ VIGFD) B, (8,0) { 3 Ju(-(42))
c
+ tm r—y“_l u(222-y)}
Y
+ /L (2+1) [PCHY {flm e -2 u(-(2+2)9f (5.9)

Comparing this with results from the last section, we find that pure shear

corresponds to
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where k2m are constants depending on the stress =azztuis znf orientation.
Using the Green's temsor (eq. 2.13) for r > o wizz T, = R, and using

4 the notation of equations (3.11), we can now evzluate equ:zion (5.4) for the

most general initilal stress field, we have:

2 hod L

I -R E : 1
u = —— ——— E (5 . ll)

2~ 2+ 3+
ta 8 (kEr) SQZ(R) g, (kBR) + s“(R) g, (ksk)

n

3- 2+ A

3+

2

-
2- 2+ 3+ -
+ ¢ 8y (ksr) LSQS(R) g, (kSR) + siS(R) g; (kiR)]zin’:’¢)

3~ 2+
o 8 (ker)[s“(R) 8¢ (kBR) + sss(R) 3

+a, g¥ (k1) 2(2+1) (3 )3 [s ® R s () S |2 (6.0)
m 82 %o a 22 By (KR ™ S A=) i KR et
4- g \3 4t s~
+ ey gy (kyr) L(L+D) (;) [s“(a) gy (K B) + s () 17 (k) |P. (8,6)
5- g \3 bt — }
+a gy (k,r) L(2+1) (;) [SQZ(R) g, (k,R) + 5., (2) 7 (kR) B, (5,4)
+ e, g (k1) 2(2+1) (§->3 [s ® gt @R +s. (D)5 &k a)] B, (8,4)
Lm °2 (1 a 23 2 a S T = ~fm"' ?
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where the static s functions are given by:
-uf
s, = 22D sy
21 %
R
o = 2u(8+l)(242)
L2 R UL
oo e 00207 o))+ AR(EHD) (20-1)
23 - y BT
(5.12)
o =~ 2u(42)/R)
L4 251
R
.- usty) /ITHTY
25 2-1

Y R

This is the initial value field corresponding to a stress pulse applied
at r = R at time t=0 in an infinite medium. The first term in this expression
corresponds to a toroidal shear wave. The next four terms corresponds to

a spheroidal shear wave and the last four terms correspond to a compressional

2 5-

wave. In the farfield gl- = g, = 0. Then the remaining terms correspond

to a pure radial P-wave znd a pure transverse S wave. The coefficients of

1 2 3 . .
2m’ d tm and dlm in equations (3.14) and (3.17).

Thus, (5.11) determines the complete solution for the radiation field due to

B E'and glcorrespond to d

creation of a spherical cavity with the most general prestress.

The coefficients a , and flm are independent until a specific

am’ Sim
prestvess is defined. These coefficients depend on the static field only

and- are independent of frequency. There will therefore be three independent
waves - a toroidal wave and two spheroidal waves for each value of R. The
spectra for £ = 2 are shown in figure 4. The two spheroidal waves corresponding

to coefficients ag c are labeled P1l, SV1, and P2, SV2, respectively. The

2m
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toroidal mode is labeled SH. It is interesting to note that the £ = 2
modes consist partially of peaked spectra and partly of spectra which are
flat in the low frequency limit, The linear combination of these (eq. 5.10)
that corresponds to pure shear has a flat spectrum.

The & = 2 waveforms are shown in Figure 5. These look much different
than the waveforms for pure shear, but in fact the linear combination of these
given in equation (5.10) is the pure shear pulse.

The waveforms for higher £ values have more and more oscillations.

An example is given in Figure 6 for the & = 4 waveforms. The result of this
is that the spectra become more and more peaked for higher order £ values

and the maximum frequency increases slightly for each increment in 2. The
slope of each peak as w + 0 increases with 2. The slope of: each spectrum as
w > » is -2 for all . Figure 7 shows the individual Pl spectra for & = 3,
4, 5 and 6. The magnitude of these peaks will vary with angle as the
corresponding vector spherical harmonic. It will therefore vary more rapidly

with angle than pure shear.

These results shed some light on the old argument about low frequency
spectral peaks in relaxation problems. Archambeau (1968) solved the problem
for the radiation from a spherical cavity in pure shear, but he made an
approximation for a more localized stress field by truncating the volume
integral (similar to equation 3.2) at a radius Rs' This always leads to a low
frequency spectral peak in the far field. Minster (1973) discussed this
problem in some detail.. Snoke (1976) showed that this approximation leads
to zcausal results in the time domain and concluded that the approximation
was incorrect and that the spectral peaks were therefore spurious. Our
results are somewhat different from those of Archambeau's Rs spectral

peak. That approximation removed energy from the low frequency part of the
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spectrum at wavelengths greater than Rs. Our results show that a spectral
peak can in fact exist, but the effect is to add in additional energy at
frequencies slightly above the "corner frequency" defined by the pure shear
spectrum. Also, the magnicude of the spectral peak will vary with angle.

If the prestress is predominantly pure shear, then a spectral peak will be
observed only near the quadrupole nodes. If the stress were more inhomogeneous

then the peak can be observed at all angles of observation. Examples of
this are given in the next section. There have been a number of observations

of spectral peaks from earthquakes and explosions (e.g., Linde and Sacké,

1971) and'in—inhomogeneous prestress is a likely reason for this.

Also shown in figures 4, 5 and 6 are the waveforms and spectra for the
relaxatioﬁ/stress pulse term (eq. 5.11) alone. Physically, the stress pulse
term corresponds to a sudden stress equal in magnitude to minus the initial
prestress on a spherical surface in an infinite medium. Thus scattering
diffraction by the cavity are neglected and the stress pulse is rapidly
radiated away. The stress pulse term is a fairly good approximation to the
exact solution, especially near the beginning of the pulse. The main
differences are that the stress pulse term is smaller in amplitude and stops
abruptly at t = 2R/v. The exact waveform looks like a stretched out version
of the stress pulse term. The spectra contain many dips not present in the
exact solution. These are due to the abrupt end to the waveform. These are
the same features found by Burridge (1975) when he compared his exact solution
for a growing spherical cavity in a pure shear field against Archambeau's
"transparent source approximation" to the same problem. Use of the stress
ptlse term alone is similar to the transparent source approximation, but has
scme advantages. The transparent source required the solution of the static

problem before the dynamic problem could be done. Minster (1973) attempted to
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use the transparent source approximation for an ellipsoidal rupture, but found
the static ﬁroblem extremely difficult. Also, Archambeau's use of potentials
have some singular properties which lead to difficulties in other problems
than the case of pure shear he considered. In particula;, for the case of

a pure compressive stress field, the method gives no radiation. The stress
pulse term, on the other hand, is easily evaluated for any geometry. It
simply requires doing the surface integral (eq. (3.3)) on an ellipsoidal
surface or other surface of interest. It is singular in the limiting case

of the dislocation (a flat surface), but can be performed for any surface

enclosing a finite volume.
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6. Preexisting localized stress fields

In this section we want to examine two physically plausible prestress
fields. The first is due to a point source of compression, the second due

to a point dislocation. An interesting fact is that both of these stress

concentrations look like uniform static shear field when far away from the
cavity, but have some anomalous features when nearby.
The simplest inhomogeneous prestress field is due to a point source of

compression, Consider a spherical region in the earth which has expanded or

contracted, The displacement about the center of the sphere is spherically

symmetric and is given outside the spherical region by:

(6.1)

o |

3 cC A
: gy=-—e =4c¢V
“~ r2 r ~

where ¢ is a constant depending on the magnitude of the contraction.

We now consider the seismic radiation when a spherical cavity forms

somewhere outside the center of compression. The coordinates are shown in

figure 8. To translate the displacement field from the center of compression
to the center of the sphere we use the well known expansion of 1l/r in !
spherical harmonics.

© 9
1 R
r Eo st Pz(cos 8) R<L (6.2)

Taking the gradient of this expression, rewriting in terms of vector

spterical harmonics and using equation (5.8) to compute the normal tractionms,
we find
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: © -2
A R :
g(g ).er = 2ue éé% Zz;i [2(1-1) on(e) + (2-1) Y2(2+1) 320(6)] (6.3)
Note that for L >> R
A 4uc V/g
e, = LT[EZO(B) 2 320(9)] (6.4)

which was shown in section 4 to be a pure shear stress field, as noted earlier.
It only remains to compute the coefficients °f,3*' The actual static

displacement field cannot be expanded as in the last section, but the difference

field u* can. We can determine the coefficients a

s Som by comparison of

m e

equation (6.3) with equation (5.9)
For L >> R, the spectra and waveforms are identical to figures 2 and 3.

Some interesting features appear when the cavity is closer to the stress con-

centration. Figure 9 shows the spectra dnd waveforms near the quadrupole nodes

when L = 2R, Instead of vanishing at these angles, the amplitude is reduced
by about a factor of 3. The spectra of both the P and S waves are sharply
peaked. At angles away from the nodes, the spectra are flat. As the source
is moved still closer to the cavity, the spectra change dramatically. Figure
10 show the spectra near the quadrupole maxima when the stress concentration
is .1 radius from the cavity surface. The corner frequency is increased by

an order of magnitude. The slope above the corner frequency is also changed.
The corner frequency is no longer a measure of the size of a cavity. Instead,
it is 2 measure of the area of high stress on the cavity surface. An important
and interesting fact is that’from observations of first motions only, the
radiation pattern appears to be very nearly that of a quadrupole source

although the waveforms and spectra vary greatly with angle (see Figure 12).

v o
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As a second example we consider a prestress due to a point dislocation i

e~

located at r = L. The coordinate system is the same as that shown in
Figure 8. The initial stress field and the spectra and waveforms are
considerably more complicated than for the point source of compression, but

the main effects are the same.

The displacement field due to a dislocation is given by the Volterra

relation (e.g. Steketee, 1958)
80 =/ 80)T(C(x,x )) 8 da (6.5)
s ~ ~y "~

where the integral is over the surface of the dislocation and G is the static
elastic Green's tensor. Since we consider only a point Green's tensor, the

integral becomes:

s(® = 5+ TR (6.6)

where S is the slip vector § = AEAA. The dot products with a and § are
interchangeable. The static Green's tensor is given by Ben-Menahem and Singh

(1968) and can be written for lﬁl < |§°|:

, " + *a
' ' G(x,x ) = 1 é, (2-m)! Bim(i) yim(fo)
: L~ ~0 4y 9/=1,l,0 == (24m)! L (R+1)

f (6.7)
+ *o + *o
+—§2m(3~‘) Elm(ﬁo) + rglm(ﬁ) -ylm(fo)

2(22-1) (2+1) (2243)
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The vectors indexed with a minus are the same as those in equation (5.1).
The remaining eigenvectors are:

- e N Y TTS )
Nyp=7t - @) B +122 ]

.l [(£+1+r) /% (2+1) Bop - (y-2-2) (24D 3zm] (6.8)

+ L
M o> r’ VYL (2+1) “C"zm

Py

If we restrict the problem so that either the slip vectorﬁ or the normal 3
is in the direction of the radial vector gr' we can use equations (5.8) for the

stress derivatives. We take the slip direction to be radial, take S = |/§J, and
for convenience take the normal vector to be 'ée. Then
~ "~
3(39 S(g(g’) er) ey (6.9)

Most of the terms vanish when the point dislocation is located at 6,¢ =0.

Ben-Menahem and Singh show that in this limit

m>

~Lm om r

Y2 (2+1) B { 2(e+1) 6 1m -4

~2.m

NIH

!
+3{ren oy + S1m ) (6.10)

Nlb—b

2 (141)

NIH-

{z(z+1) S0+ 6

{9.(2+1) 8§10 = S

NIH
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After some tedious but straightforward calculations, we find that the

( stress field at the surface of the cavity is:
b |
A s | = we-pe+2) { R\ fn J—
,'I.‘_(,\:")°er = z = f) —_— +£2-'1. 2 (2+1)
= =R g=2 2L A

- Wy

® 2 2-2
£ 3 u(227-y) (2-1) (5) (9. P .+ YL(2+1)
<2 yp(2e-1) L3\ % e =

B, + /IGFD) 32_1]> (6.11)

- 2(2+1) [z P

3 3
=-(2+2) R
T e y (+1) (22+3) 13 (f) (sl Bpp + 5,72 (241) By

3 - 2(2+1) [s 2

g-1 T 872 (D) 52—1])

where
s, = A(HL) (2-Y) (243) + 2u (t+2-y) (141)°
5, = n2@+? - )

For L >>R the only remaining term is

i A A 3 4
! . g(g*)-er = —3[(.?21 + —2‘921) -6 (29‘_1 + —2'52_1)} (6-12)
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which is pure shear field as shown in section 4.
Coﬁparing equation (6.11) with equation (5.9), we can solve for the
f

unknown coefficients We then use equation (5.11) for

2o’ “tm’ “fm °
the initial value field and use the technique for section 3 to find the
exact radiation field.

The results are sh@Gn in figure 11 for a dislocation located at
L = 1.5R, one half radius from the cavity surface. Both the P and §
spectra are peaked at all angles. There is a large variation in the slope
above the "corner frequency! The pulse is very sharp on the side of the
sphere closest to the stress concentration. It is véry broad on the other
side. The dislocation causes a region of high, nonuniform stress on the
closest part of the cavity. This acts as the source of the radiationm.
The pulses are widest where diffraction is most obvious, on the far side
of the cavity. The relaxation/stress pulse term alone matches the exact
waveform very well (except for the diffracted arrival) for angles less
than 90°, but rather poorly at larger angles. This is to be expected
since the surface term which is neglected in that approximation includes
the effects of diffraction. An interesting feature of the waveforms is
the second arrival seen at low angles. This is a diffracted wave which
has travelled around the cavity and back again. An analysis of the first
motions shows a relatively simple angular distribution. The distribution
is nearly quadrupole for L > 2R. For smaller distances, the angular
distribution is more complex (see figure 12). Note that the first motion
for angles greater than 90° has actually reversed direction. The dis-
tribution is still relatively simple and could easily be misinterpreted as

a quadrupole distribution with a finite number of observation points.
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Conclusion

We have developed a general method for computing the radiation due to
the instantaneous creation of a spherical cavity in an arbitrarily prestressed
medium, Vector spherical harmonics were found to be convenient for solving
the éreén‘s ten;or integral equation in the frequency domain, Transforming
the initial value problem to a boundary value (stress pulse) problem proves
to be a great simplification and provides an approximate solution as well as
an exact solution. The appfoximate solution is valid when diffraction by the
source is not too important. For the case of pure shear, the results of
this technique agree with previous solutions,

We have examined the case of inhomogeneous prestress in both a general
manner and for the specific cases of a nearby point source of compression
and a difslocation. Localized stress concentrations result in:

1, The appearance of energy above the usual corner frequency. This

can incéease the corner frequency substantially.

2. Far field spectra peaks. These exist near the quadrupole nodes for

a slightly inhomogeneous prestress and at all angles for a very
localized stress concentration.

3. Non-zero amplitude at the quadrupole nodes.

4, The creation of a diffracted wave which travels around the cavity.

5. A radiation pattern which may or may not appear to be quadrupole

in nature but is generally less complex than the change in
waveforms and spectra.
6. A sharp wave on the side of the cavity nearest the stress concen-

tration and a broad, more complex wave on the other side.
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The results given here may be useful in observational studies since it has
implications‘for both earthquakes and explosion induced tectonic release.
In particular, the corner frequency is often used as a measure of the size of
the source R * v/mc where R 1s the cavity radius or éault length depending
on the type of source being studieé} and v 1is the wave velocity. For localized
stress concentrations, the corner frequency seems to give an estimate of the
size of the stress concentration which may be much smaller than the source
dimension. Further, the existence of spectral peaks could lead to errors in
estimates of seismic moments. The seismic moment is defined by M = uﬁh where
U 1is the shear modulus, u is the mean displacement and A 1is the surface
area of théighlt. It is also proportional to the zero frequency far field
spectral amplitude (e.g., Kostrov (1974)). If observations are made of
spectra only close to the corner frequency, the apparent low frequency amplitude
could be much higher than the actual zero frequency amplitude leading to
overestimates of seismic moment. This could lead to misinterpretation
involving not only fault length, but stress drops as well. In addition to
these problems, great care must be taken to remove the effects of the source
when doing studies of earth structure since the variation of pulse shape
with ("take-off'") angle could cause confusion between the effect of earth
structure and the effect of localized stress fields.

On the other hand, these results should make it possible to study the
local stress variations in the earth. The techniques used in section 5 can
be used to invert for the stress (difference) field after an explosion. 1If a
large earthquake is to occur in some region, it means that a large stress

concentration has developed which is not relieved by small earthquakes nearby.

Observations of a change in the waveforms and spectra of small earthquakes in
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an area could indicate a developing stress concentration. Such an observation

A v
was made recently by Zollqeg (1979), who reported a change in the high frequency

slope of the spectra of small earthquakes in Missouri from w_l before a

large earthquake to m—z after the earthquake. He also ¥eported a variation
of the slope with qgimuth. This is the sort of behavior that is to be expected
if a local stress concentration is relieved by the large earthquake. 1In

addition to this, observations of the features described in this paper in

the variation of spectra and waveforms with angle could be used to identify the

location of developing stress concentrations.
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Figure Captioms.

Fig. 1. The problem considered here. A cavity suddenly forms in a prestressed
medium, The racdiation due to the relaxation of the stressed material
can be computed using a Green's tensor integral equation with the
aid of vector harmonics appropriate for the cavity geometry.

Fig. 2. Far field P and S wave spectra for a uniform shear field. The first
figures show the spectra for the stress pulse term alone. The
second are the exact solutions. The dips in the spectra are removed.
The frequency is in units of wR/V. All examples in this paper use
a = 8 km/sec, 8 = 5 km/sec.

Fig. 3. Far fieldpulse due to the creation of a stress free sphere in a
uniform shear field. The exact solutions agree with the solutions
of Hirasawa and Sato.

Fig., 4. The most general £ = 2 mode radiation consists of three independent
waves—-two coupled P and S waves labeled Pl, SV1 and P2, SV2 and an
uncoupled S wave labeled SH. The spectra for the £ = 2 modes are

! shown here. Two modes are flat and three are peaked. All higher
ki modes (¢ > 2) have peaked spectra.
~ Fig. 5. Waveforms for general & = 2 case. A particular linear combination
of these produces the pure shear waveforms shown in Figure 3. The
second column shows waveforms using the stress pulse term alone. The
exact solution is a stretched out version of the approximate solution.
Fig, 6. Waveform for. £ = 4, All higher g modes are oscillatory. The

number of oscillations increases with 2.
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Fig. 7. The effect of an inhomogeneous prestress is to add in energy at
’{ frequencies higher than the usual corner frequency corresponding

to uniform shear. Shown here are the spectra of the far-field
first P-wave for £ = 3 to & = 6 and the pure shear spectrum for
comparison. A sufficiently inhomogeneous prestress can result in
a low frequency spectral peak which varies in magnitude with
angle,

Fig. 8. Coordinate systeﬁ used when a cavity is created near a preexisting
center of compression.

Fig. 9. Far field radiation near the quadrupole nodes. When the center of
compression is located one radins away from the cavity, the radiation
field is much like a pure shear field. Near the quadrupole nodes
however, there is a substantial difference. The displacement does
not vaqish. It is reduced from the maximum by about a factor of 3.
The pulse is oscillatory and the spectrum is peaked.

Fig. 10. Far field spectra near quadrupole maxima. The spectrum is strongly

affected by the location of the stress concentration. Note the

increase in cornmer frequency and the change in slope near the corner.

kipo . < it

Fig. 11. Radiation field from spherical cavity created one-half radius from

a point dislocation. Shown here are the far field spectra and
waveforms as a function of angle around the cavity. The spectra are
all strongly peaked. The waveforms are narrow on the side of the
sphere near.the stress concentration, broad on the other side. The
second arrival seen on the first three shear waves is a diffracted

phase which has travelled around the cavity.
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Fig. .2.

-

First motions for localized prestress fields. For L > 2R , the
first motions are very nearly quadrupole in nature. At closer
distances, the pztterns shift. For the center of compression, there
is simply a change in the "nodal" angles. For the dislocation

a pulse directed opposite to the quadrupcle pulse gradually becomes

prominent at large angles. The angular distribution of first motioms

is less complex than the angular variation of spectra and waveforms.
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ABSTRACT

Traditicnal methods of synthesizing seismograms in the near
or recional distance range (0 to 500 km.) describe the earth model
with planar homogeneous layers. In the high frequency band (.2 -
10 Hz.), in which the seismic ground motion is primarily observed,
uniformly asymptotic solutions to the depth eigenfunctions can
instead allow a radially symmetric earth model to be described
by inhomogeneous spherical layers. Ground displacement u is cal-
culated in the fregquency domain by '

wlw,$,d) =fM(w,p,¢,A)f(w,p)dp ’
T

where T is a contour in the complex ray parameter (p) plane, and
M(w,p.¢,4) a2 point representation of the earthqguake or explosion
source including the effect of horizontal propagation to A.

The response of the earth model f(w,p), calculated from the
propagator matrix egquation for a source in a radially inhomo-
geneous sphere, includes all possible body and surface waves. Airy
functions are chosen to define the inhomogeneous layer matrices.
Numerical difficulties usually encountered in the calculation

cf f(w,p) in layered media are avoided by the calculation of sub-
determinants of the fundamental matrix solution and by the de-
composition of the propagator matrix in a layer into a sum

of matrices of differing numerical crder whenever the Airy functions
behave exponentially. The contour integral can be evaluated

by the residue theorem or by numerical integration, the time domain
response obtained by fast Fourier transform. Most applications
require an earth model to be described by no more than four to

five inhomogeneous layers.
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INTRODUCTION

At teleseismic distances in the freguency band (0.2 - 10 Hz.),
surface and direct body waves are sufficiently separated in time
that either may independently be used to extract source and struc-
tural properties. 1In the distance range 0 to 500 km., however,

a complete or much larger set of seismic waves must be employed

to properly predict ground motion in even a small time window.
Although complicating the problem of waveform synthesis, the short-
er signal duration offers an opportunity with high frequency
recordings for resolving finer structural details and near field
source properties impossible with longer period teleseismic re-
cordings.

At sufficiently high frequencies asymptotic solutions for
the radial or depth eigenfunctions accurately approximate the exact
solutions for radially inhomogeneous layers even with relatively
severe velocity gradients. Formalisms developed by Langer (1932,
1849), Olver (1954), and Wasow (1965) can be employed to obtain
asymptotic solutions (in frequency) to either the radial component
of seismic potentials (Richards, 1976) or to the radial vector-
matrix egquations of seismic motion (Chapman, 1975; Woodhouse,
1978). Such solutions allow a much simpler description of com-
plicated earth models by a small number of radially inhomogeneous
layers. By their validity at high freguency these solutions are
particulerly suited to applications in the frequency band in which
near and regional seismic ground motion is primarily observed and
interpreted. Compared to a model specified by planar homogeneous
layers, a model specified by radially inhomogeneous layers will
usually reguire many fewer mathematical operations to construct
its freguency-ray parameter response. This objective is met
in the following sections by detailing a procedure for synthe-
sizing complete seismograms in such an earth model. The pro-
cedure comhines (1) the zeroth order (in frequency) asymptotic
solutions to the propagator and fundamental matrix, (2) the
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notation of generalized vertical slownesses cr cosines de-

:{ veloped by Richards (1976), and (3) the vector-matrix methods
of Abo-Zena (1975) for avoiding the numerical difficulties in
calculating the response of a layered medium. The THEORY
section of the paper develops nctation and the generalized
solution for displacement. The reader primarily interested in
developing practical numerical codes may proceed directly to the
section titled EXAMPLE USES OF GENERAL SOLUTION FORM, referring
as needed to the sections EVALUATION OF PROPAGATOR PRODUCTS,
THEORY, and Appendices A and B.

THEQRY

General Solution Form

By applying the vector representation theorem for a sphere,
the seismic displacement vector u = e r + usg = u¢g may be

written as

w -iwt n m n m
u(rlel¢'lt) = dwe z Z (up + VB + WC ) (1)

2 - s n=0 m=-n m - n
§
I m m m . .
i where P , B , and C are vector spherical harmonics defined by
H n n n
5 m m
i P = rY (8,¢)
: n n

m m

B = 9,Y(8,¢)/[n(n + 1] (2a) ;

=n 1%, ;

m m i

C = -rxv,¥ (8,¢)/[n(n + 1)] " s

n n

(v, = £ = + cosecb E—)

= 235 2 7%

m m m i
Here the P , B , and C are fully normalized:
n "n n




m m f2n+1 (n-m)‘] % _m imy f
Y (8,¢) = (=) [ : P (cost)e” (2b) !
n ! 47  (n-m)! n |
2T T m m' 27 /T m m' ‘
P P sinbdéd¢ = J[ JrTB *B sin5dgdo =
0 "0 ~n ™ 0 Y0 “n ~n'
277 v m m' (:)
C -C sin6d6d¢ = Sdmm'Snn'.
0 0 “n Tn

r, £, and ¢ are unit vectors in the spherical coordinate
. . m . . .
directions r,6,¢. P (cos8) is an associated Legendre function.
n
The radial eigenfunctions, U, V, and W satisfy vector-matrix

eguations of the form

T

Q
r1]°’

vio= w@, tw AT +uwiANy (4)
for SE type body waves and toroidal free oscillatiocns, and
*. s .S _ S -1, S -2, S,.8
. 37 ¥ = m(éo +w AT +w ATV (5)

for P-SV type body waves and spheroidal free oscillations (e.g.,
Chapman, 1973). When gravitational effects can be ignored,

a2 T S S
the displacement-stress vectors v, Vv are defined

S o= B S -

-

(6)

0o

where the radial stress functions, T, R, and S are defined in
F; terms of U, V, and W by Alterman et al. (1959). Here and later,
: ' guantities written vertically within brackets denote a column
! vector and quantities written horizontally and separated by
commas denote a row vector.

A matrix F satisfying either (4) or (5) in the column
vectors gT, zs is defined as a fundamental matrix (Gilbert and

Backus, 1966) or matricant (Gantmacher, 1973). As shown by

Gilbert and Backus (1966), the fundamental matrices of these
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equations allow a2 convenient and notationall: compact method

cf satisfying the boundary conditions at laveres cf an earth

-~

- model having discontinuities in elastic mocduli zni/or density.

The stress displacement vector v at a racdius ie relatec to

that at a radius T, through a product oI preczacztor matrices

K; constructed from the fundamental matrices I for each i-th
layer:
‘ = = r
| v(a) = Rla,r )vir ) = K ... K v(zr), (7
3 ) _ -1
f where  K.(r; ,, ry) = E;(r; J)E; (ry) (8)

. with i1 and ry; denoting the radii bounding thsz top and

! bottom boundaries of the i-th layer respectivelr. Figure 1l

illustrates the layering scheme and conventicns used for indices.
The general solution to (4) or (5) for the cisplacement-

stress vector v, including the effects of a2 source vector

term y, can be written as

v(a) = Kla,rovir) + ¥ k2, nu@es (9)

0

where r 1is some reference radius at which a stzarting solution
v(ro) is defined (Wasow, 1965). The complete Zisplacement solu-
tion can then be obtained by substituting the rasults for U,V,
and W determined from (9) into the displacement representation
given by (1).

Fundamental Matrices of Radially Inhomocgeneous Lzvers

The basic form of solution for the diszlacament-stress

vector given by (9) is independent of any rerresentation of the
earth model, e.g., planar homogeneous layers, eszherical inhomo- .
geneous layers, etc. Assume now that the earth model is speci-

fied by radially inhomogenecus layers and ezzly the zeroth order

uniformly asymptotic solutions to the fundamexntzl matrix and ,

propagator of such layers. Adopting the nctztizz and solutions




given by 2ki and Richards (1980), ormitiinc scu-ce normelization,

and rearranging rows and columns to agree wiil :the stress-

displacement vector used by Woodhouse (1978, cives

Y (3) - (1) -1, (3) i

69(1) -&g r P2 r ph
-1 ‘pc(l) -zr-’gw) iﬁh(l) —11\71/2‘.(3)
F(r) = r"\%fh -ing ‘%) ~iagt3 :zan ¢ ~<mnn (3
Bég(l) -B g( 3) Ah(l: Ah(J)
(10a)
iAg(B) é{§(3) ;E%f3) —ir_lpg(3)
Fir)"! = x ‘@;'_iAg(l) pig (1) _Eg (D) i pg (3
-7Bh (3 An(3) -r-:ph(3) znh(3)
-iBnh () —ap () =i () an )
(10b)

-2 -1 . - . .
for P-SV waves where A=2r pzu-p, B=2r 'p,1=Y-1, ¥ is the shear

modulus profile u(r) and p the density profile pir); and

o (D) () (
F(r) = r 1 . llza)
st G
R T3
-l - % . -3
Fiz) = r\° S %R o) (11b)

for SH waves. g(l), g(3), h(l), h(3)

are generzlized radiel

eigenfunctions defined in terms of Airy functicns (see Appendix).
vV . - L. . . s .o

£, £, n, n are generalized vertical slownesses celined with

the generalized radial eigenfunctions by

e (1) v ' (3)

é=‘-ﬁ') ’ £=‘;§;TJT:

V(1) :
fe Rl , Yooz
wih (1) win (20
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The ray parameter p in the funcamental mztrices can be
associated with the degree n of the wvector sphrerical harmonics

in eguation (1) by

[
(%)
~—

p=(n+ %) /w. (

Functions analytic in radius specify the seisric velocity
behavior in all layers. Appendix A outlines and references
methods of fast evaluation of the radial eicenfunctions and
generalized vertical slownesses in such profiles.,

The fundamental matrices may be defined using any one of
several different pairs of linearly indepencent Airy functions.
The pair Ai(-z) and Bi(-z) chosen by Woodhouse (1978) represent
standing waves that exponentially decay or crow with increasing

depth below a ray turning point. The pair 2i(-ze?27/3

Ai(—z—iZ“/B) chosen by Richards (1976) rerresent up- or down-
going travelling waves. The intermecdiate choice of Ai(-zeizﬂ/3)
and Ai(-2z) still allows identificaticn of travelling waves
within a single layer, but, as will be shown in & later section,
avoids a numerical problem in the computaticn of the response
of a layered model. The superscript (1) in ecuations (10a-12)

refers to the use of Airy function approprizte for upgoing

12%/3

travelling waves, Ai(-z ). The indivicdual laver propagator

K, defined using the set Ai(-ze"‘ZH/3 32“/3) equals that

K ), BAi(-ze
i127/3

defined using the set Ai(-ze ), 2i(-z). Thus, provided
the propagator within a layer is fcrmed by (8), the superscript

-227/3

(3) can refer to either the use of Ai(-ze ) or the use

of Ai(-z) when convenient.

Boundarv Condi%ions

The propagator formalism satisfies boundary conditions on
stress and displacement components at each laver interface. The
only remaining boundary conditions are the vanishing of stress
at the free surface ang radiation conditicn in the lowermost

laver. For a sphere of radius "a" the free surface condition
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reguires that R{a)=S(a)=T(a)=0. Two possible bcundzary conéitions
may be invoked in the last layer. (1) The last laver possesses
only standing waves that exponentially decay with increasirng
depth below their turning points. (2) If it is desired to
exclude any waves from propagating in the lest laver Zrom the
solution at the free surface, the last layer must possess only
downward propagating waves. Henceforth the term "decay”

will refer to boundary condition (1) and "refleciivity" to
boundary condition (2). Witn these boundary conditions ané

when the superscript (3) refers to the Airy function 2zi(-z),

the stress-displacement vector for P-SV waves has the form

[0
vir,) =E(r,) |b, for decay
0
b2
b
or = E(r)) | b, for reflectivity.
...bz
b2

For SH waves the form becomes

0
vir,) = F(r,) [bs] for decay
_b3
or = Elr,) b, for reflectivity.

The quantities b,, b,, and b, are constants.

The analytic velocity profiles in the last inhomogeneous
layer specify the veiocity up to the center of the earth.
They need only accurately model the P and § velocities, however,
up to the maximum depth that rays bottom in the ray parameter (p)
domain needed for the solution of a particular problem. The
velocity profiles may have multiple turning poin<ts but only

one turning point may exist in this p domain. Because radial

74
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inhomogeneity and sphericity allow rays to have furninc pecintis,
the last layer automatically radiates seismic enercy back

towarés the surface with the decay boundery conditicn. With
X .

waves reflecting from or bottoming above the las:t laver reach
the surface.

The reference radius r, can be imaginei to be
the lowest level for which rays turn in the p éomain of interest.

A particular r need not be specified beczuse the Zunctions
evaluated in r, cancel in the subsecuent solu:ion zrccedure.
Including the free surface and decay boundary ccaditions

in the general solution form of (9) gives

U(a) 0 a
g(a) = é(a’rn)gn(rn-l) gl + J/. Kla,g)y(E)azg (14)
0 bl T
for P-SV waves, and
wia)f _ K'(a,r )F' _(xr_ ) o |, [° K'(a ’);'(i)di (15)
0 = '"n’=n'"n-1" b, ]’ r - el

for SHE waves. The unprimed and primed fundamental matrices,
propagators, and source vectors corresponé Lo the F-87 and SH

cases respectively.

Solution in a Lavered Sphere

ey
<

v

. . -1 -
Multiplying (14) by zn (rn_l)ﬁ(rn,a) and (15

-] N R
g'n (rn_l)g'(rn,a) and rearranging terms gives

0 U(a) G,
b =1l v(a) G,
01 = R 0 + G (16)
b, 0 G,

for P-SV waves, and




- 1 T

for SE waves,

and

R'"?

matrices

index of

boundary

Solutions of eguations
u(a), v(a)

U(a)

fltn

n—2)"’§1(r1’a)
s+l(rs+l’rs)£s+l(rs)

-1 . e
¢ S are defined
and propagators.
the source layer,

(see Figure 1).

and W(a) are
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(17)

(19)

(20)

analogously from the primed fundamental
The sbuscript s refers to the layer

denoting the radius at its lower

the radial functions

(21)
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1 -1

G.R. - G.R
371
Via) = — (22)
R, Ry, = R, Ry,
L]
& \ G! 2
W(a, = - {23)
R)

-1 .. -1
where Rij denotes the ij-th element of R .

EVALUATION OF PROPAGATOR PRODUCTS

Care must be taken in the evaluation of the propagator
products of eguation (20) not to lose precision from the sub-
traction of large gquantities of nearly eguel value. Knopoff
(1964) , Dunkin (1965), and recently Abo-Zena (1979) have shown
how to avoid this difficulty in models having planar homogeneous
layers. A1l of these methods propagate a matrix of minors of
the inverse fundamental matrix. The methods used by Abo-Zena,
however, free the lavered model from any constraints on its
total thickness. Because the precision problem also exists
for models composed of racdially inhomogenecus layers, the matrix

methods developed by these authors can similarly be applied.

The R.. Elements
13

- - ]
The elements Ri; and Ri; in (21-23) may be written as

1]
-1 0
R, = Epé 0
0J p :
0-
=1 1
Ry, = ER ) '
ol (24)
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i
i
q
i
0 ;
-1 - , 11
32 B EsvE o ' (24)
0
-1 —— - r 1 l
Ry B Eguk [O] '
j
where the row vectors EP’ ESV’ ESH are ceter—irz¢é by
_ -1 3 _ELL (2 Y3 Y (3)
_E_P - [l’o’o'o] g-n (rn_l) = rn_l\r"n__l [“"~: 386G —&g ’
=1 3
-z pg( )] ro-1
-1
ESV - [Ololllo] gn (rn_l) =
{25)
2 N 3) L (3) i (3 2 (3)
rn-lﬁ\pn-l [ -iBnh ,=Ah ,~r ‘o= ,Z7h ] {r
n-1
— -1, - '

Sl CLLR ALLSCE S

n-_

Because the elements R;: do not depenéd on toe crder number m
of the spherical harmonics, they may be movel c:itside of the
m summation when (21-23) are substituted ian =guztlon (l). It
is then convenient to perform the summetion =ver = of the

" m 6B ™ and G'C'. ~hess titi
products Glgn, ngn’ 1§n’ Gagn, an G:En' ~—hness= cguantities

may be written as:




m m -1 -
[ l6,p +GBJ=1[1,0,0,0]g (s.r+g:%-52) = EKe
m=-n n ™ - T
n m m -1 ~
Yy 6P +G68B) =1(0,0,1,0)S (s.r +s.2 -5 ) =E_XKt
R 3 < n = e - = —SV= ‘
m=-n |
(26) :
] G'C = [1,0,0,0]8' (s',& + s'.¢) =E_.E'=".
m=-n '™D - 6= = ¢~ ==H= =

Appendix B defines the column vectors s_, s-, s_, i'e

s' <for generalized earthquake and explosion £oin:t sources. ¢

¢

t and t' are the sums of the column vectors defined in eguation ]

and !

(B7) in the vector directions r,6, and ¢ :

¢

= +

g s

(27)
' =s'ck + §'¢2

The Displacement Representation

The theorem for the transpose of the proluct of matrices 2E,

T T,T

o
It

(28)

it
(1]

and the fact that the transpose of a scaler leawves it unchanged,

imply the identities

> _ T~T_.T
Epég =t £ Ep 4
o T=T T
Evat = 'K ESV '

(29)

1
Ep.f-\;[g]-- [1101010]§T§PT .

T T
[1,0,0,00R Ec; -

| ts
)
<
=
—
cow
)
"
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The transposes of t and t' are taken as
t? = sr + sle +sf0 !
(30)
T _ T, T,
t Sg g+ ¢ ¢ - :
S, etc. are now row vectors. Using equations (1), (21-24)
and (29), it then follows that for a generzlized point source 1
and for a model described by radially inhomogenecus layers,
; the displacement u can be written as !
l_._‘(l',ﬁ,@,t) = g
tTRT[EL E., - EX, E_JK |0
w . w |= = 'Zp Zgv T =gy =2pi=
SemtetS 0 , (31)
[ o] T T T
{(1,0,0,0]K [EP ESV ESVEP]L g
0
0
Equ't
+ wdpdw
E xlli
=SH= |0
3 The n summation has been converteé to an integral over p by
taking the first term in a Poisson transform (e.g., Nussenzweig,
1963).
Matrix Multiplication Scheme
The matrix [ET E - E'r E_.] is an anti-symmetric
=P =8V =SV =P -
matrix of minors of gn" of the form
[Ex Eey, - Eq, E;) = Y = (cont'd) (32)
=P =8V =SV =p =n




svow— ﬁ==========H=I=-=I------.‘
81

5 {cont'd)

where

a, = -(a? + B2EY)
-1 vV

a, = (r "pA + Bng) ,
¢, = iph (33)

.4
d“ = ipg

Y 2.2
d, = (ng + r “p*)

If the reflectivity instead of the decay boundary condition had
been used in the last layer, the Airy function Ai(—ze-i2“/3)
would replace Ai(~z) in the definitions of the vertical slow-
nesses appearing in the guantities di'

All elements of gn are evaluated at the boundary of the
last laver and in the analytic velocity profiles of the last
layer. Evaluation of the P-SV terms in the brackets of (31)
involves 2 successive redefinition of a Y; matrix at each

i-th higher layer boundary starting at the lowest layer boundary:

- T
In-1 = Epoainkna
b — ’T
In-2 = Eho2in-1En-2
]
I 1 .8,

Each newly defined Y. matrix remains an antisymmetric matrix.

Only five independent terms are needed to specify each new

ii (Menke, personal communication).

A U VTSRS YU R YIS 2V WV,
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The denominator for the P-SV term is given by the inter-
section of the first row and the second column of the result
for ;. The numerator is calculated by first evaluatiirg the
product
Y = R K .
Y1 Ry K ; (35)

right multiplying ¥__, by K (r_,r__;)...E,(r ,a), and left
multiplying the second column of this result by the row
vectors of E?.

The methods of Abo-Zena (1979%) can be applied to evaluate
the products of equation (31l) for the P-SV term anéd the products
Eqpk’, ESHi' for the SH term. These methods decompose the
propagator matrix of a layer into a sum of matrices cf differing
numerical order whenever the depth eigenfunctions are exponentially
small or large. 1In an inhomogeneous layer this happoens at ray
parameters for which a P or $ wave bottoms far above the layer.
At such ray parameters only tunneled energy can resicde in the
iayer. Because tunneling is a frequency dependent phenomenon,

a particular exponential decav value depends on frequency.
When this situation occurs in the i-th laver, define the
positive integers mj (j=1-4) and the complex numbers éj (j=1-4)

with magnitude of order 1 £rom the products

(1) (3) = my .,
g (rj)g (r;_y) = ae
(3) (1) _ ~-m;
(1) (3) _ m;
h (r;)h (r; ;) = 4a,e '

. (3) (1) =
h (r;)h (ry_q) = a e .

The sj and mj values cari be calculated and returned by an Airy

function subroutine based on the exact and asymptotic formulae
given in Abramowitz and Stegun (1964). (More detailed references
are given in Appendix A.) Next define the matrices Ejhj from

the product of column vectors Xj and row vectors h hfter the

jo

i
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exponential scale factors of the fundamentzl rnztrices are

remcved, Xj is civen by the jth column cI the I.(r;) matrix and

i
Ej by the jth row cf the F (r l) matrix. The cropacator K.

can then be written as

m Mz . . . 27
K. = vyhe' + vhe + yv,h,e”" + v ke (37

In Abo-Zena (1979) such a decomposition cf K, is invoked ‘
to varying degrees depending on which of three diferent
relations exist between phase velocity ané laver velocities.
For inhomogeneous layers these cases are restated in terms of
the exponential behavior of the Airy functicns used in the

definition of the fundamental matrices:

211l racdial eigenfunctions behave either as sinusoidal or phasor
type functions having a magnitude of oréer 1. Compute Ei éirectly

and determine li from

. = » 2
i Ei Yinky (28)

II. m, and m = 0, m andéd/or m.# C
A matrix og may be defined as
og = v,h, + v, h

Compute Xi from

m d
(og) =1+l—9- *+, (EJT Y.1T + hy 12'1' YE;.5 (X:5,+ v,ohy)

Y.
=1

+

em;{m;r v o+ (o9 "1y, (wh+ 09) - (ei)Tzi+lgg} (39)

+

e_mz{[hvazT + (og) ]Y +1(v:h, + og) - (c:w:)TYl.*_:l }

III. m, and/or m, # 0, T, ané/ox m_ # 0
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Compute zi from

P T T, T T, .T.T
li - (21\_1 + Ezlz)};—i+l (12}324- Xl.}l}) * (.115\_7.3+ b_gxl,)};i.pl (Y.l.l_-).h + .!3.}13)

(mi+ms) (thT + }‘TVT)Y
—3—3

te =1 =i+l(xshs + Xxhx)

(my-m;) ,,T..T T.T
te (EJXJ + szu)zi+l(zsiu + Xlﬁl) (40)

(ms-m;) T T T T
e (hyv, + hyv)Y; v,k + v h)

+
—2 =2 —2 2

-(m;+ms) T T T T N
. (EZXZ + Ehzk)ll-fkl (lygu + ‘_’221.2)

+ e
All of the symmetries noted by Abo-Zena can be exploited in
the evaluation of the matrix products of algorithms I-III.

The propagator products in the SH calculation can be
evaluated using simpler analogous algorithms for the decomp-
osition of the SH propagator. New row vectors ESH are given
by right multiplying by the propagators.

At large m, the product having the largest exponential
factor in algorithms II and III dominates the £final result
for X andé the other terms may be ignored. The exponential
behavior assumed here is based on the travelling-standing choice
for the Airy functions used in defining the fundamental matrices,

©27/3) and Ai(-2). The displacement regresentation

-i2w/3)

Ai(-ze
given by (31l) equals that given by substituting Ri(-ze
for Ai(-z) in (31) in all but the last layer. Thus the response
calculation may alternate between either choice of independent

Airy functions when convenient. If the travelling wave choice,

Ai(_ze:£2n/3
Il and III would be dominated by exponentially large terms

) » had been used, the propacator in algoritlms

of nearly equal magnitude and opposite sign whenever the para-
meter N defined in the Appendix A equaleé :1. 1In this case the
travelling-standing choice avoids the numerical difficulties
of the travelling choice.

Algorithm I always involves fewer mathematical operations
than II and III if all of the terms irn II and III are cal-
culated. Branching between the algorithms can be allowed at
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nen-zero values of mj, maximizing the use of a2lgorithm I.
Care must be taken, however, that the kranching value of mj is
small enough that precision is not lost in algorithm I.

The exponential scale factor accumulatec from each redefi-
nition of ii cancels in the numerator and denominatcr of the
integrand until the boundary below the source layer is
reached. The scale factor for propagation below the source bound-
ary can thus be discarded. The scale factors separately ac-
cumulated by the numerator and denominator for propagation throuch
and above the source layer can be saveé and used to scale the
final result for the integrand.

Only tunneled energy can reside in a layer at ray para-
meters corresponding to rays bottoming Zar above the layer.

These p points occur whenever the parameter ¥ in the Appendix
equals *l. The parameters |wt | and |ut1.| defined in Ap-
pendix A then serve to guantify the tunneling phenomenon. When
the tunneled energy in a layer is sufficiently small for both

P and SV waves ( |wt }>10 and |w16|>10 ) » the propagator for
the layer can be ignored and the X matrix redefinitions begun

in the next higher layer.

EXAMPLE USES OF GENERAL SOLUTION FORM

I. Inhomogeneous Unlavered Sphere

As an example of the generality of (31), consider an
explosive point source at radius ry in an unlavered inhomogeneous
sphere with radius r,. For the radial cdisplacement component

calculate
n n  G.R 'Pper
m 1 32_1'1.._
2 U(rs)g - z -l ~1,.=1,-1 (41)
m=-n n m=-n szRafRa:Rzz '

where for an unlayered sphere

m

1 -1
_n

s IR &

n -
] G,P -r (1,0,0,0}s, and R} ). (42)
m=-n

[NV WY P 7~ & TSRV SERERIRERSE T
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Next evaluate the source vector S, from the radiation

factors defineéd in Appendix B. For an explosive point source
the moment tensor is isotropic, giving in eguation (Bl0)

Lp = 1p = Lgy = Lgy = Lgy = Lgy = 0

{42)
2 - b =

LP LPS M0 .
In the far field, the non-zero radiation factors then become,
from egquation (B9)

Fj _ F- _ M

ﬁp = 2p = a—;—-—Pn(cosA) (44)

Substituting S, using equations (89) and gzg(ro) using
the definition of the inverse fundamental matrix in eguation (10D)

gives
2
- -iwp(gL z[g% - Z;g—]g(B)(rs)Pn(cosA)
~ 0
(s = J T o - (@ s
2 a2 Yv
“asrsro¢psoo[(g€ - ;TL) + —fé&n]g (r,)

fcr the radizl component of the Fourier time transform of dis-
placement. {n = wp =1/2)¢E, and n are evaluateé at r,. The
denominator factor,

1 2r22  4p?z~
[(_Z.-__'L +..:.£]
£ p? r !

can be recognized as a form of Ravleigh's dispersion function
with generalized vertical slownesses substituting for the more
familiar plane wave cosines.

This sclution must possess a ray-mode duality eguivalent
to that of the layered half space described by Pekeris (1948).
To demonstrate this duality, reduce (45) to either (1) a
sum of modes of free oscillation of the sphere or (2) to a sum
of individual displacements due to all possible seismic rays

interacting with the free surface.




A modal representation can be derived by omitting the
Poisson transform of the n summation and evaluating the inverse
Fourier transform by contour integration, civing a double summation

over radial order number n and poles .w_ of Rayleigh's function

in complex freguency (e.g., Sato et al?, 1963). An alternate
mode representation can be derived by the spectral method, which
evaluates the p integral in (45) at the discrete frequency pcints
needed for the application cf a fast Fourier transform. The

p integral is then evaluated by contour integration, which
together with the inverse FFT results in a double summation

over freguency wn and poles iPn in the complex p plane.

The validity of ray theory improves with increasing
frequency. A ray representation can thus be most simply
illustrated by incorporating a high fregquency epproximation of
the radial eigenfunctions in (45). At sufficiently high
frequency and small réy parameter, the first term in an
asymptotic representation of the Airv functions can be used to
approximate the radial eigenfunctions. This approximation,
which is eguivalent to the WKBJ approximation, can be used to
expand the inteérand cf (45) into a sum of phasor terms that
can be identified with seismic rays. The displacement gen-
erated by each ray can then be determined by either the
spectral method combined with saddle point integration (Richerds,

1873), or by Chapman's (1978a) technigue c¢f WKBJ seismograms.

S 0w i

II. Inhomogeneous Layered Sphere

Again consider a buried explosive point source but now
evaluate the matrix products of egquation (31). A2As a specific
example take the layered earth model shown in Figure 2, and
an explosion source at 1 km., depth. Radial displacement is
calculated by the spectral method using a real fast Fourier

transform:
© s N
u_(t,¢,8) = re J eiwtf PSSV s (46)
r 0 r Do_sv ?.
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N 1 <
- k3 s
BB_EX = 8xr ot MOPn(cosA)- 0
P-SV [ s&s l
0
_.(3) (1) =T, T T T
{l=s "7 (rgd g " (rg), 0,018 [EpEg,, = Eo Ep)K|0

Ll,O,O,O]gT[BTE

0
EpEgy ~ EgyEplE é
0

where I' is a contour in the complex p plane.

The matrix products in (46) are evaluated at points in
the complex ray parameter plane, applying the methods of
Abo-Zena (1979) as previously described in the section
EVALUATION OF PROPAGATOR PRODUCTS. The approximations to
the radial eigenfunctions at each layer are constructed to be
continuous functions in the complex ray parameter plane
(see Appendix A), allowing the integration path to be deformed
off the real p axis. Deformation of the p contour below the
real p axis reduces the large oscillations of the intecgrand
associated with poles on and near the real p axis. Numerical
integration thus becomes a computationally efficient procedure
without invoking an unreasonably attenuating earth model to
move the p poles off the real axis.

Residues at poles in the first quadrant of the p plane
(Figure 3) describe seismic radiation at the free surface.
Epplication of the reflectivity boundary condition to the lower-
nmost layer boundary produces poles in the fourth guadrant whose
residues describe transmitted radiation into the last layer.
The integration contour in the p plane must therefore be
deformed such that these fourth gquadrant poles are excluded
from the response at the free surface. Application of the
decay boundary condition in the lowermost layer eliminates
the fourth guadrant poles at the expense of packing poles more

densely along the real ray parameter axis at small ray para-




meter values. The reflectivity boundary condition is thus pre-
ferrec for the deformation of the left end of the contour
across the real ray parameter axis.

Provided that the Legendre function ?n(cosb) is not éecom-
posed into horizontal travelling waves as in eguaticn (Bl1l),
the integrand vanishes as p goes to zero anéd the p contcur may
end at the origin as in the antipode problem described by
Rial and Cormier (1979). 1In the distance range for which sample
seismograms were synthesized (75-150 km.),near vertically
incident body waves, however, were not important in the complete
response. Rays having tazke-off angles more vertical ané bot-
toming at depths deeper than the direct P wave reach the
receiver only by suffering partial reflections from layer
boundaries. Such arrivals are conseguently much smaller
in amplitude and delaved in time relative to the earlier portion
of the waveform. These arrivals can be excluded by deforming
the left end of the contour across the real p axis into the
left portion of the first guadrant where the integrand decays.
The p point at which the contour may be so éeformed can be
estimated from the lowest bottoming depth of the direct P
waves in the distance range of calculation. The range of
distances, freguencies, and ray parameters needed for the svn-
thetics shown in Figures 4-5 required the inclusion of only
the Q(z) travelling wave in the decomposition of the Legendre
function, and the left end of the integration contour was
deformed across the real p axis.

Decay of the integrand of eguation (46) also occurs along
the real p axis at large values of p (e.g., Frazer, 1977).
The integrand decays more rapidly, however, by deforming the
right end of the contour upward into the upper right portion
of the first guadrant around the last ray parameter pole
(Figure 3). The residue at this pole accounts for the funda-
mental Rayleigh wave. For the earth model chosen here the
position of the fundamental Rayleigh pole is well separated
in the complex p plane from all other poles. It is thus

convenient to evaluate the displacement response in two
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stages (Figure 4), separately celculating the response due to
the fundamental Rayleich pole with cne contour anc the response

{ cf all other modes with another contour.

‘ Figures 4-5 show unfiltered traces oZ synthetic displacements.
The contour defcrmations shown in Ficure 2 &c not introduce
truncation pulses common to methods that apply a phase velocity

filter to the contour integration. The earliest disturbance

in the wave-forms represents the direct P wave. Some numericzl

noise occurs at the Nyguist frequency (2 Hz.).

The real axis contour can be alternately deformed to

completely enclose p poles in the firs<t guadrant. The steps

in the contour deformation would be identiczl to those described

by Ugincius and Uberall (1968) for the problem of the elastic

cylinder. The spectral response could then be evaluated by

applying Cauchy's residue theorem to the p poles. The mode

sum obtained would be analogous to that obtained by Harvey (1979)

for planar homogeneous layers.

In either the numerical integration method cr the mode
sum method most.of the layer calculations cen be saved and catalogued

for use at different distances with different sources at different

depths. To achieve this economy in the numerical integration
method, catalogue the d2 element of ¥ matrix and a2ll elements
of the is—l matrix at the freguency and rey parameter points

needed for the FFT and p integration.

MODEL SPECIFICATION

A spherical earth model need not be first flattened before
the inhomogeneous layers are specified. The zero order asymptotic
solutions account for the curvature of laver boundaries as well
as inhomogeneity in the layers. Formulae for a flattened model
are redundant. The expressions for 1 and Q needed for the calcula-
tion of Airy functions in Appendix A are ecuivalent to those for
a spherical model; Pm(cosA) is approximately replaced by
(kx)me(kx) with the Ese of Szegos (1934) asvmptotic expression
for P®, (See for example Chapman, 1973, or Miller, 1977.)

ghe asymptotic solution used in this paper restricts the




velocity profiles to having only one turning point. The presence
of a low velocity zone would thus preclude an earth model having
only one layer (a simple inhomogeneous sphere).

How accurately do the zero order asymptotics model the
radial eigenfunctions of an inhomoceneous layer? The accuracy
depends on both frequency and the magnitude of boundary curva-
ture and first and higher order radial derivatives of density
and elastic moduli. Higher fregquency allows larger magnitudes
for curvature and radial derivatives. For a given velocity
profile the error can be estimated from either the higher order
terms in the radial component of the potential eguations
(Richards, 1976), or from the first higher order solution term for
the fundamental matrix obtained by Woodhouse (1978). With the
use of smooth relatively linear velocity gradients, the zeroth
order asymptctics can be used in the frequency band (0.2 - 10 Hz.)
with a relative error in a radial eigenfunction bounded by 0.1%
at 0.2 Hz. for a velocity gradient of 0.1 sec ~T.

Asymptotic series type solutions, however, fail to properly
account for narrow angle reflections from regions having rapicd
velocity variations over short distances (Chapman, 1978b).
Layer boundaries should thus be introduced at points best
described by a first order discontinuity such as the moho. If
the errors in the zeroth order solution become unacceptably
large in a given freguency band, then the layer should be broken
up into thinner layers of weaker velocity and density gradient.
Inflections and kinks in the velocity profile, expressed by
a large value of second and higher order radial derivatives,
should be avoided. In many practical applications at 500 km.
or less distance, no more than four to five inhomogeneous layers
should be necessary to describe the velocity variation from
crustal layers, high velocity mantle, and low velocity zone.

CONCLUSIONS

The preceding has demonstrated the practicality of including

an inhomogeneously layered model in a calculation of the complete
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' displacement response at short distances. The isolation of the

fundamental surface wave pole in the complex p plane allows the
synthesis, if desired, of only the fundamentzl surface wave mode
by numerical integration.

When only 2 small subset of body waves at large distances
is desired, the inhomogeneous layer matrices and response function
calculation can be modified for a reflectivity tyre calculation
analogous to that of Fuchs and Muller (1971) for planar homogeneous lay-
ers. For such subsets of body waves it would not be difficult to
extend the decomposition and multiplication scheme used for the
evaluation of the layer matrix K, to the boundary matrix Q.
used in the reflection matrix method described by Kennet (19274),
where

— -—1 -l
Q; = Ej_y(ry y)E;(ry q)

-~

In this method the fundamental matrices g;il and Ei must be
defined such that they can be partitioned into four 2 X 2 matrices
each of which can be associated solely with up- or down-going
waves.

In any of these applications the layver inhomogeneity
minimizes the number of layers needed to describe the response
function and thereby the computation time required to synthesize
displacement. The zero order asymptotics adegquately model the
behavior of the radial eigenfunctions of an inhomogenecus layer
in the frequency band (0.2 - 10 Hz.) for the wvelocity gradients

common to wide regions of the crust and upper mantle.
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FIGURE CAPTIONS
1
Figure 1 Layering index scheme.
Figure 2 Earth model based on the southern California crustel

model of Kanamori and Hadley (1975) and model CIT 109
of the upper mantle (Archambeau et al., 1969).

Figure 3 Paths in the complex ray parameter plane for the
evaluation of displacement in a spherical earth model ]
having a single discontinuity at which the P and S
velocity increase discontinuously. Position of poles
in the P-SV response are shown schematically by x's.
Rayleigh poles lie near the real axis. Franz poles
emanate upward and downward from the real p axis at
approximately *60 degree angles. The poles of the
P-SV response of the earth model shown in Figure 2
differ from this form only in having additional

! Franz poles in the first guadrant associated with

higher layer boundaries.
Figure 4 Displacement calculated from the spectral response
(0 - 2 Hz.) given by the numerical integration along
the contours shown in Figure 3. Polarityv is reversed.
Source was an explosion at 1 km. depth. Time domain re-

cords were obtained by inverse FFT using 128 freguencies.
Figure 5 Synthetic displacement at 75 to 150 km.
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APPENDIX A:

RADIAL EIGENTUNCTICNE

Practical Evaluation of Airy Functions

The radial eigenfunctions are cefined

Airy function Ai:

g(l) (r) = ‘f;:

(3) _ m Ye [+4 .
g (r) = \g 'Q—uxk— Ail( Za) '
or
T Vu s
=‘J§ Y QZ/Z Ai(-zae 12n/3)'
1
p (D) CJT LY B ai(ep e 25/3,
(ry =¢= QBUZ zge ’
1/
n (o) =T w¥ B iz
V2 QBVZ g’
or .Y :
=‘J§ Ve QZ/Z Ai(-zee-tzr/3),
— 2/3
z, = (3/2w1)) 7,
= 2
r
Ta = f Qadr ' ':{3
rP
0 - (%, - phn 0
a a? r ! B

T .
qa;z— Ai( zae

Yy,

Yu i27/3,

in

tex=s of the

f[ Qgdr '

The exact radial eigenfunctions of aa inhom:c-zsneous layer

are analytic functions in the complex p plane.

powers used in

however, place

defining the arguments cf the Airx

branch cuts in the complex p glans

approximations of the radial eigenfuncticas.

T"3e fractional
Zunctions,

These branch cuts

(21)

cf the asymptotic




105

2nN . where N=0, %1

may be removed by multiplying wt by ei
depending on the phase”of the complex T and ray parameters p.
Cormier (1976a) discusses how N may be determined in a complex
velocity profile when subroutine packaces for Hankel functions

or order 1/3 calculate the Riry functions. The Airy functions,
however, can be most efficiently calculated with the exact and
asymptotic formulae given in Abramowitz ané Stegun (1964).

P.G. Richards (personal communication) has used this approach,
patching the exact and approximate formulae together when

fwt] = 3.5. The subroutine LANGER written and tested by Richards
together with an improved algorithm for calculating N (a portion
of his subroutine ROMTAU) have been used in the calculations of
this paper. The integers mj needed in propagator multiplication

scheme of equations (39-40) can be constructed from normal LANGER
output.

Practical Evaluation of the Delay Time 1

The integral defining T may be (1) analytically evaluated

using the velocity profile v = arb in each layer (Richards, 1973,
1976; Choy, 1977; Frazer, 1977; Mondt, 1977); (2) numerically
integrated in an analytic velocity profile given by a polynomial
in radius (Cormier and Richards, 1%77)}; or (3} analytically
integrated by parameterizing the logarithm of radius in the
Bullen parameter (ln = r/v(r)) (Woodhouse, 1974).

Method (3) is eguivalent to the parameterization described
by Cerveny et al. (1977) and used by Garmany, et al. (1979) for
flat inhomogeneous layers. It is usually the most computationally
efficient. For the calculation of the seismograms in Figures 4-5,

each layer of the velocity model in Figure 2 was parameterized
using method (3) with

lIn(r/r,) = a + b(n/n,)* . (22)
where r, and n, are the values of r and n at the top of the layer.
The constants a and b were determineé from the values of radius
and velocity at the boundaries of the layer. The delay time A




was then given by

Tlp) = 2n,[1 - (p/ng)?1"2 b/3 (A3)

Incorporation of Attenuation

Incorporation of attenuation in any of the above methods for
computing Tt can be accomplished by a complex velocity profile
(e.g., Cormier and Richards, 1976). When a complex velocity
profile can be specified by the form

() = vo(r)-(l + &) (24)
method (3) reduces to the form

TA(0) = (1 + &) lrylpe (1 + ) (A5)
where € is a small complex number constant in radius, v,(r) a
real velocity, Ta the delay time in the attenuating layer, and
Ty the delay time in the layer having the real velocity profile
evaluated at the ray parameter p=p-(l+£). Io include the dispersive
effect of linear attenuation mechanisms € must have non-zero
real and imaginary parts, each of which is frequency dependent
(Futterman, 1962). If dispersion can be ignored in the frequency
band of interest, then £ may be taken to be pure imaginary and
frequency independent.
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APPENDIX B: SOURCE RADIATION

Simplification of Source Radiation Properties

In the computation of the complete response function
it is convenient to crmpute the summation over order number
m cf procducts of the source factors Gi and vector spherical
harmonics. Three such combinations can be rewritten as

follows:
n m m -1
} I[6,P +GB) =1[1,0,0,0]8 (s + S.8€ + 5.0)
m=-n n n - = = —=
n m m -1
= a
m=z-n [G3En + Gggn] [0’0'1’0]§ (ErE. + EGL + .S.\jg)
n m -1
I G = [1,0,0,018 7 (s'g8 + 5 ,¢)
m=-n n

-1
Equation (19) defines the matrix § as the proéuct of pro-
and s' now

pagators. The column vectors s ¢

Srv Sgr 540 Sgr
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(Bl)

emphasize the major properties of the source radiation pattern and

are defined by

1 m
F2 (E)y(£)agy,

m
n To -1 1 sy,
So _j QS = sin€ o¢ [a(n+ 1)]

n r oY
5= "1 / " r2le)y(ora “/ln<n+1)l’“
a

lwn
H
1]
=
?bﬂb
o]
H
[~
s

0
"
t~1

m=-n

n r, ay“// "
S g ./f gs (E)Y (E)GESIne 5% [n{n+1)]
a

(B2)
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r 3Ym
j( ’ Egd(ﬁ)s'(i)dﬁ :-gﬂ//[n(n«rl)]l’2 {B2)
n -— [+

E a (cont'd)

n
€ -

Specification of a Seismic Point Source

The expressions in eguations (B2) éan be simplified by
specifying the seismic source vectors Yy and y'. Consider a
seismic source specified by the Fourier time transfofm i
of a vector f of body force density acting at a point. As in

Saito (1967), y and y' are determined from an expansion of

|+t

in vector spherical harmonics:

0 0
(&) ={o , vy = [ (B3)
£ S £
= w2
\ w*
- £:°
t wz

with f? ' ff and f? determined from

- v 2 S,m sS.m T .m l
£(£,8,¢) = ] ] [(£5p" + £,B° + £.C7) i
n=0 m=-n n n n .
S 2n 1
£ = £-P*™ sineded¢ ' (B4) |
0 0 n )
27 L 2T AT m
ff = / £.B*™ sineded¢ , f f f.C* sin6d6d¢,
0 0 n 6 Yo T " nm

*denoting the compex conjugate.
£ can then be described with the zeroth order (in freguency)

moment rate tensor M by

E o= -MY8(z - g

) (B5)
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Gilbert (1971), where §(r - £s) is a three dimensicnzl delta
function given at a point with radius vector e In spherical
polar coordinates,
(r - x) = SlFmT 16(6-6,)68(0-0,) (B€)

r?sinsg

A distributed source can be represented by & point source

with the device of multipolar expansions (Archambeau, 1968).

A sufficiently accurate approximation of the radiation pattern

of a distributed source a high fregquency, however, can reguire

the inclusion of many terms in such an expansion. The eguivalent

definition with a moment tensor requires many higher order moment
tensors (Gilbert, 1971) together with higher oréer spatial

derivatives of the delta function (Hudson, 1969). The radiation

factors given here consider only the first term ir such an

expansion, a source
low freguency. The
higher order moment

The properties

representation always valid at sufficiently
same solution procedure may be used when
tenscrs are included.

of M have been discussed by Gilbert (19871).

By conservation cf angular momentum, M must be a2 symmetric

matrix (Mre = MS:’

Mr¢> = M¢r' M6¢ = M¢e). For a point

double couple, guadrapole source M must have zero trace

(Mpp + Mgg + My

= 0). For a pure explosive point source,

M must be isotropic, i.e., all off diagonal elements are egual

(Mpg = My = Mgy
M__ =M

rr 86 = Moo

= 0), and all diagonal elements are egual
= M;). An exposion having some tectonic stress

release may be represented by an M in which the off diagonal

elements are non-zero. The elements of M have been defined by
Gilbert (1971) and Aki and Richards (1980) in terms of earth-
quake fault plane parameters.

Results for the Source Radiation Vectors s_, etc.

r

Simplified expressions for 5, etc. may now be found from
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3 substituting equations (10b),(B3),(B4),(B5), and (B6) into
% eguations (B2) and applying the addition theorem for vector
spherical harmonics. For examples of the simplification
procedure see Sinch and Ben-Menahem (1969) and Ward (1979).
In the results that follow, A is the epicentral distence.
The azimuthal angles C and E are defined by Singh and Ben-
Menahem for a generalized co-ordinate system at the source
§ and by Richards (1978) and wWard (1979) for a north-east-down
(NED) co-ordinate system.
o - wMipT | g'R]
‘ -r 8nr _vo_ -h(3)2
L h
g SV.
é
__(;(3)21>
' (l)i
-1 g P
, .. = cosCuw ipY1 —h(3&
‘ =8 = SV
] 81rrs/ps h(l)X
E sv
. (B7)
(3)y
“g Lp
(1)£
. "1/2 . ./P
_  sinCw 21pY/T (3) 1
= = -n Loy
8'171:s Pg h(l)X <y
3 v
N -g¢ )fsa
, . sinCw” 2ip/3 (1
s 5 Tsn
Trg¥Pg Pg
3 v
| -h( )XSH
{ . cosCuw” 2 ip/3 (l)f
| 2 = "X sn
! SanJps Bs
|
i
; g(3) ’ g(l) ' n(3) , and n{1)  are evaluated at the source radius




rg in the analytic velocity profiles of the source laver.

The radiation factors consist of far fleld terms (‘BP'
XSV, XSH) and near field terms (/EP st, ISH

Fﬁp + Nip
ip = Fx,p + ij
p ﬁésv + stv
?ésv + ﬁfsv
Ben = oy + Yen
Rsu = ﬁéSH + N—ésri

parX
Ls)
[}

o
0
<

I

(B8)

bac)
0
<

L[}

with

[ 2/*2LP + l/uzLP]P (cosh) - 2%o/r LP P! (cost) /(iwp)
p - 1 S 3 n :*p 2 n 1 p

o
g
]

7 P
R, = [p?/r? L, + 1/} L31P_(cosh) + 2£p/r L;P} (cost) / (iwp)

Y v sv
Rey = (@ - p*/r®)L] Pl(cosA)/(iwp) - mp/r L, P (cosb)

sV sv
%Esv = (0 - p*/x*)L; P(cosd)/(iup) + fie/r L, Pj(cosh)

(B9)
FY = Y711 - 2 1 .
Lsy = nLSHPn(cosA) p/r LSHPn(cosA)/(zmp)
Fs -/ 1 - 2 1 .
£SH = nLSHPn(cosA) p/T LSHPn(cosA)/(zmp)

v

N NS 2 /.2 oM 1 2.2
= £. = r L' cota P cosl) /(w )
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1 = -np/r L' cotaP! (coss)/(wip?)
fsv PS n P .
) (3%)
N N . 1 22 (cont'd)
gv = Np/rLpgcotsP (coss)/(w'p*)
J v - Z
N sy = ~2nlgyCotAPl(coss)/(w’p?) - p/r Li,l2cotsP (cosb)/(Zwp) +
(2csc?n - 4cot2A)Pé(cosA)/(iw3p3)]
§£SH = 2nLg,cotdP (cosd)/(w®p?) - p/r LI, [2cotsP (cosb)/(iup) +

(2csc?h - 4cot2A)Pg(cosA)/(iw’p3)

where p independent factors are given by:

1= 2 . o .z,_
LP Meecos 3 + M6¢51n2, + M _.sin‘“‘f M

¢¢ rr
2 — .
LP = Mrecoss + Mr¢51n2
3 —
Lp = Mrr
1. 2
Lsy = Ip
2 _ 1 (B10)
sy = Ip
o= - inz
LSH = Mr¢c053 MreSLn,
Lgp = sinB(M¢¢ - Mgg)/2 + cosZBMe¢
L - . (] . 2-;
LPs = cosZBMee + 2Me¢51n23 + 2h¢¢51n E

The radiation factors defined remain valid as £ vanishes. For
4 not near 0, it is possible to divide Pn(cosA) into travelling
wave functions Qn(l)(cosA) anad Qn(z)(cosA),

Pn(cosA) = Qn(l)(cosb) + Qn(z)(cosA) (Bll)

For large wp these behave asymptotically as ;




(1)
2y _ ] 1 7 {wp-7/4] .
On - \prn51nb e (B12)
N BPn

Nussenzweig (1965). With Pn = =7 and eguations (Bl1l-Bl2},
it follows that

1 .

P (cosh) = <ZwpP (cosi). (B13) g

Thus, for large wpA the far field terms behave like Pn(cosAi, and
the near field terms like Pn(cosA)/(pr) ané Pn(cosﬁ)/(pr) .

The radiation factors in equations (B10) are essentially
the same as those given in Aki and Richards (1980) and Ward (1979).
In the far field only three p independent factors are necessary
to describe the radiation of P waves, and two p independent
factors to describe the radiation of SV or SE waves. 1In order
to fully account for the radiation pattern of the source in the
near field, howéver, the L;s factor must be added to the results
reported in Aki and Richards and the Legendre functions not

divided into travellinag wave functions near A4=0.






